4.3 Equilibrium conditions for pure substances and second law

The general condition for equilibrium is \((dS)_{U,V,n} = 0\), i.e. \(S\) at maximum. We have

 \begin{equation*} dU(S,V,n) = -p\,dV + T\, dS + \sum_i \mu_i\, dn_i \Rightarrow dS(U,V,n) = \frac{dU}{T}+ \frac{p}{T}\,dV - \frac{1}{T} \sum_i \mu_i\, dn_i \label{eq:dU_dS_general} \end{equation*}(4.2)

Assuming two phases of a pure substance (\(\alpha\), \(\beta\)) inside an ISOLATED system (const. \(U, V, n\)) we get

 \begin{equation*} \begin{split} \Rightarrow dS(U,V,n) = &\;\; dS^{\alpha} + dS^{\beta} = 0\\ = &\;\; \frac{dU^{\alpha}}{T^{\alpha}}+ \frac{p^{\alpha}}{T^{\alpha}}\,dV^{\alpha} - \frac{\mu^{\alpha}}{T^{\alpha}} \, dn^{\alpha} + \frac{dU^{\beta}}{T^{\beta}}+ \frac{p^{\beta}}{T^{\beta}}\,dV^{\beta} - \frac{\mu^{\beta}}{T^{\beta}} \, dn^{\beta}\\ &\;\; U = U^{\alpha} + U^{\beta} = const. \Rightarrow dU^{\alpha} = - dU^{\beta}; \quad dV^{\alpha} = - dV^{\beta}; \quad dn^{\alpha} = - dn^{\beta}\\ \Rightarrow &\;\; \left(\frac{1}{T^{\alpha}} - \frac{1}{T^{\beta}} \right) dU^{\alpha} + \left(\frac{p^{\alpha}}{T^{\alpha}} - \frac{p^{\beta}}{T^{\beta}} \right) dV^{\alpha} - \left(\frac{\mu^{\alpha}}{T^{\alpha}} - \frac{\mu^{\beta}}{T^{\beta}} \right) dn^{\alpha} = 0\\ \Rightarrow &\;\; T^{\alpha} = T^{\beta} \quad \mbox{and} \quad p^{\alpha} = p^{\beta} \quad \mbox{and} \quad \mu^{\alpha} = \mu^{\beta} \\ \end{split} \label{eq:two_phases_S} \end{equation*}(4.3)
which means that 1) thermal equilibrium, 2) mechanical equilibrium, and 3) chemical/phase equilibrium holds.


With frame Back Forward as PDF

© J. Carstensen (TD Kin I)