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3.6 Efficiency and Carnot cycle

The efficiency η of a heat engine is defined as

η = |work performed|/(heat input) = |w|/q1 (3.7)

Figure 3.3: Illustration of the effi-
ciency of a reversible cycle process
(heat engine) operating between two
temperatures. According to Eq.
(3.7) we find η = 5/20 = 25%.

We now combine the first and second law to calculate the efficiency for any
reversible cycle process taking heat q1 from a hot source at T1, releasing some
heat q2 to a cold sink at T2 and performing work w . This scheme is illustrated
in Fig. 3.3; soon we will discuss the Carnot cycle as the most important
candidate for such a process. But before we will check the efficiency resulting
from the first and second law. According to the first law which just reflects
energy conservation we find w = q1 + q2 where q1 > 0, q2 < 0, and thus
w > 0. According to the second law the entropy S is a state function for
which after one cycle we find 0 = ∆S = q1/T1 + q2/T2. Including these
results into the definition for the efficiency we get

η =
w

q1
=
q1 + q2
q1

= 1 +
q2
q1

= 1− T2
T1

=
T1 − T2
T1

(3.8)

So obviously the entropy is intrinsically related to efficiency. Eq. (3.8) di-
rectly implies two remarkable results:

1. Obviously, all reversible engines operating at the same temper-
atures have the same efficiency.

2. Obviously, no cyclic process is possible in which the sole result
is the absorption of heat from a reservoir and its complete
conversion into work.

These two statements can easily (obviously) be extracted from the first and
second law of thermodynamics, but actually statement 2 (postulated by
Kelvin) and statement 1 (concluded by Carnot) have been the historical
starting points for finding the second law.

Figure 3.4: Perpetual motion ma-
chine of 2. kind.

In what follows we will briefly repeat the reasoning and it becomes obvious
what a big challenge it was (and is) to extract the existence of a state function
”entropy” from the statement of Kelvin. To make sure: Nothing we have
learned in this chapter we now can take for granted. Just the statement
2 above we will use as a starting point (as an additional knowledge to the
energy conservation as stated in the first law).
First we now check for the combination of cycle processes shown in Fig. 3.4.
Since we are discussing reversible processes we can invert the direction of
flow in the second cycle, i.e. we discuss a refrigerator (or heat pump) taking
heat from the cold ”sink” and transporting it to the hot ”source” by applying
work.
Let us now assume that process A has a larger efficiency than process B (the
contradiction to statement 1). Of course we now can tune the two processes
that process A exactly releases as much heat into the sink as process B
extracts from the sink. As net effect we could perform work just by cooling
the hot source. BUT this is in contradiction to (Kelvin’s) statement 2. So
all reversible cycle processes acting between two heat reservoirs must have
the same efficiency which proves statement 1.
We now can calculate the efficiency for any reversible cycle process to find
the general result, and this will of course be the Carnot cycle. With respect
to work and heat we find the following quantitative results:

� A → B: ∆U = 0, w1 = −q1 = −nRT1 ln V2

V1

� B → C: q = 0, ∆U = w2 = nCV (T2 − T1)

� C → D: ∆U = 0, w3 = −q2 = −nRT2 ln V4

V3
= nRT2 ln

V3

V4

� D → A: q = 0, ∆U = w4 = nCV (T1 − T2) = −w2 (B→C)
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Figure 3.5: A general cycle process
being divided into Carnot cycles.

Additionally we find from the Poisson equations (2.35)

T1V
γ−1
1 = T2V

γ−1
4 and T1V

γ−1
2 = T2V

γ−1
3 ⇒ V2

V1
=
V3
V4

(3.9)

Inserting this result into the definition for the efficiency we find

η =
q1 + q2
q1

=
T1 ln(V2/V1)− T2 ln(V3/V4)

T1 ln(V2/V1)
=
T1 − T2
T1

(3.10)

Rearranging Eq. (3.10) we find

q1 + q2
q1

=
T1 − T2
T1

⇒ 1 +
q2
q1

= 1− T2
T1

⇒ q1
T1

+
q2
T2

= 0 (3.11)

which proves the entropy to be a state function at least for a all reversible
cycle processes acting between two heat reservoirs. To generalize for all
reversible cycle processes we use Fig. 3.5:
Any process can be divided into Carnot cycles. Inside its p−V contour the
counter-rotating processes cancel out. Around the perimeter no counter-
rotating processes exist, so all outermost parts of the Carnot cycles add up

(with respect to energy and with respect to entropy). Taking now the limit for infinitesimally small cycles any
shape can be represented perfectly by Carnot cycles leading to

0 = lim
i→∞

∑
i

qi
Ti

=

∮
dq

T
=

∮
dS (3.12)

for all reversible cycle processes. That irreversible processes are less efficient we already found in section 2.6. This
clarifies the inequality sign in Eq. (3.1).
In summary, we proved that the 2 above statements and ”entropy is a state function” are equivalent; however the
introduction of entropy allows the most easiest quantitative evaluation of thermodynamic properties. In addition,
the equation

q1 + q2
q1

=
T1 − T2
T1

(3.13)

motivated Kelvin to suggest a new thermodynamic T -scale, just depending on efficiency measurements.
Typical values for η are between 0.3 to 0.4. η = 1 is not possible, because the cold bath is always heated! (As we
will see later T = 0 K cannot be reached).
Fig. 3.6 shows the Otto engine as an example of a highly relevant cycle process which is not the Carnot process.

Figure 3.6: Otto engine: Cycle of isentropic and isochoric processes.

It consists of
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� 1-2: Isentropic compression p2 V
γ
2 = p1 V

γ
1 with γ = Cp/CV = 7/5 = 1.4 (O2 or N2 has 3 translational plus

2 rotational dof).

� 2-3: Isochoric increase of p by heating.

� 3-4: Isentropic expansion.

� 4-1: Isochoric decrease of p by cooling.

In reality the edges marked by the circles in Fig. 3.6 will not be fully isochoric due to piston (German: Kolben)
movement and leaky valves. The piston serves for the changes in volume. The combustion of the fuel takes some
time, thus, the piston moves during the combustion. By the movement, the volume is changed, thus, the process
is not fully isochoric.


