2.5 Work

Applying the general definition of differential work to an expansion against a constant external pressure p_{ex} we find for the expansion work

$$dw = -\vec{F}d\vec{z} = -p_{ex}Adz = -p_{ex}dV$$
, i.e. $w = -\int_{V_1}^{V_2} p_{ex}dV = -p_{ex}\Delta V$ (2.13)

Note: EXPANSION work has to do with:

- 1. EXTERNAL pressure.
- 2. Change in volume of the system.
- 3. The sign is given by convention, work done by the system is negative.
- 4. In general w is path dependent.

Examples for expansion work are

- Joule experiment, i.e. free expansion (against $p_{ex} = 0$). w = 0, but $dU = \delta q \neq 0$. Obviously any derivative of energy with respect to volume has the dimension of pressure which motivates the meaning of $\partial U/\partial V$ to be an "internal pressure".
- Expansion against constant pressure:

$$w = -\int_{V_1}^{V_2} p_{ex} dV = -p_{ex} \Delta V$$
 (2.14)

(rectangular area in a p - V diagram).

• Reversible and isothermal expansion:

$$\delta w = -p_{ex}dV = -pdV$$
 (internal pressure = external pressure for reversible changes) (2.15)

p and V change, thus a thermal equation of state is needed. As an example we use the perfect gas equation

$$w = -\int_{V_1}^{V_2} p dV = -n R T \int_{V_1}^{V_2} \frac{dV}{V} = -n R T \ln \frac{V_2}{V_1}$$
(2.16)

Several types of parameter pairs exist whose product represents an energy:

Type of work	dw	Comment
Expansion	$-p_{ex}dV$	external pressure, volume change
Surface expansion	$\gamma d\sigma$	surface tension, area change
Extension	f dl	tension, length change
Electrostatic	Φdq	electrical potential, charge change
Electrical field	$\vec{E} d\vec{P}$	electrical field, polarization
Magnetic field	$\vec{H} d\vec{M}$	magnetic field, magnetization