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5.2 The relaxation time approximation in the Boltzmann equation

At time t = 0 we will switch of all external forces of the system. By scattering the system reaches the thermodynamic
equilibrium state again, which will be described in linear approximation by
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fo(7, k) is the equilibrium distribution function.
The relaxation time 7(k) describes how fast the system reaches thermodynamic equilibrium again.
The solution of the relaxation process is:
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The essence for the following calculation is that this relaxation time does not depend on the external forces (This
is a very strong assumption; it does not hold e.g. in the space charge region or for ”injection level spectroscopy”).

For steady state (—) =0 we get
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This is the fundamental equation for the description of stationary processes in relaxation time approximation.
For small perturbations we evaluate in a series:

(k) = fo(P k) + fO @ F) + SO k) + (5.13)
and consider only the linear terms leading to
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Since the gradients V, and V) depend already linearly on the perturbation the derivations of f() are of second
order f?) and are therefor neglected. We find:
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For an electrical field . .
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we finally get

—f(lT)((gE) gg«qE Vo — (E—u)§rln(T)),ﬁ> (5.18)

The three terms on the right hand side describe
e the ohmic law
e particle diffusion
e heat transport phenomena

An overview of the above described an other time consuming processes is discussed in the semiconductor script.
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