
44 Specific Heat Capacity

3.7 The Debye Model

Calculating the number of particles for a linear dispersion relation we get from Eq (3.32) a limiting frequency
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Taking into account the three orientation in space we get for the inner energy
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and Θ: Debye temperature.
The limiting cases are:

I: T ≪ Θ, i.e. xD → ∞
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II: T ≫ Θ, i.e. xD → 0
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and consequently
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This is the expected classical result (the Hamiltonian is a bilinear function of the coordinates).


