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3.6 Quantum mechanical description of lattice vibrations

Phonons are the quantum mechanical quasi particles which describe lattice vibrations. The Hamiltonian for an
Eigenstate of the lattice vibration is

H = ℏω(k, λ)
(
N +

1

2

)
. (3.31)

Here ω(k, λ) is the frequency of one Eigenvalue of the oscillation. N is the number of phonons which occupy this
state; since phonons are Bosons, each state can be occupied with an arbitrary number of particles. The factor 1/2
is the zero point energy of the vibration; this will be neglected in the further considerations. k is the momentum
and λ the polarization. λ indicates the different vibration modes (orientation in space , longitudinal, transverse,
acoustic, optic). The vibrational Eigenstates we get by diagonalization of the Hamiltonian as described in the last
section for the 1D example.

As usual we apply periodic boundary conditions; so each state occupies a k space volume of
(
2π
L

)3
. With the often

used approximation we find for the complete number of states with momentum values smaller than |⃗k| = k

N(k) =

(
L

2π

)3
4

3
πk3 . (3.32)

Therefor the density of states is

D(ω) =

(
V k2

2π2

)
dk

dω
. (3.33)

In order to apply the Eq. (3.4) to (3.9) we must calculate the density of states or the dispersion relation

ω = ω(k) . (3.34)

For this we can take the exact solutions or the approximation of section 3.5, i.e. the Einstein- and Debye-model.


