The free energy
is the corresponding thermodynamic potential for the thermal contact of section 1.9.
The corresponding coordinates are therefor \(V, N\), and \(T\).
It is well known that
|
| \begin{equation*} F(V,N,T) = U(V,N,T) - S(V,N,T) T \end{equation*} | (1.17) |
and
|
| \begin{equation*} dF = \mu dN - p dV - S dT \end{equation*} | (1.18) |
Mathematical interpretation: total differential, partial derivative
| \(\left.\frac{\partial F}{\partial N}\right|_{V,T}= \mu\) | \(\left.\frac{\partial F}{\partial V}\right|_{N,T}= - p\) | \(\left.\frac{\partial F}{\partial T}\right|_{V,N}= - S\) |
Physical interpretation: gradient, forces
\(\mu\): ”force” changing the particle number | \(-p\): ”force” changing the volume | \(-S\): ”force” changing the temperature |
| here: | \(V, N, T\): | generalized coordinates |
| \(-p, \mu, -S\): | generalized forces |
© J. Carstensen (Stat. Meth.)