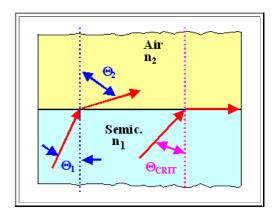

9.3 Summary

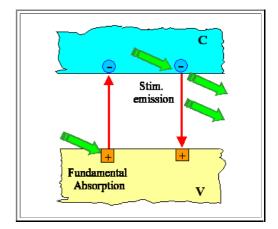
9.3.1 Summary to: 9. Optoelectronics

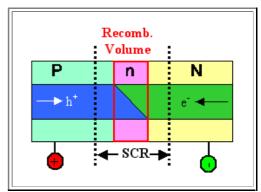
- Optoelectronics has two basic branches:
 - 1. Light in ⇒ electrical signal out:
 - Optical sensors as single elements
 - "CCD" chips in "megapixel" matrices.
 - 2. Electricity in ⇒ light out; in two paradigmatic versions:
 - LED's
 - · Laser diodes
- Here we only look at the second branch.
 - The semiconductors of choice are mostly the III-V's, usually in single-crystalline perfect thin films.
 - The present day (2008) range of wavelength covers the IR to near UV.
 - Indirect semiconductors like GaP can be used too, if some "tricks" are used.
- The index of refraction $n=(\epsilon)^{1/2}$ and thus the dielectric constant ϵ become important
 - Semiconductors have a relatively large index of refraction at photon energies below the bandgap of $n \approx 3 4$.
 - Diamond has the highest *n* in the visible region
- The thermal conductivity becomes important because for generating light one needs power (which we avoided as much as possible for signal processing with **Si**!)
 - Again, diamond has the highest thermal conductivity of all known materials - 5 times better than Cu!
- LED's come as cheap little "indicator" lights and recently also as replacement for "light bulbs".
 - Intense white light from LED's becomes possible, Advantages: High efficiencies and long life time
 - The key was the "taming" of the GaN material system for blue and UV LED's.
- LED's based on organic semiconductors (OLED) are rapidly appearing in OLED based displays.
 - Advantage: High efficiencies because of active light generation.
 - **Problem:** Product life time; sensitivity to air.
- Semiconductor "Diode" Lasers are high-power" LED's plus "mirrors"
 - Advantage: Small and cheap. Problems: Low power, "Quality".

	Wavelength (nm)	Typical Semiconductor
Infrared	880	GaAlAs/GaAs
Red	660 - 633	GaAlAs/GaAs
Orange to Yellow	612 - 585	AlGainP GaAsP/GaP GaAsP/GaP
Green	555	GaP
Blue to Ultraviolet	470 - 395	GaN/SiC GaN/SiC InGaN/SiC

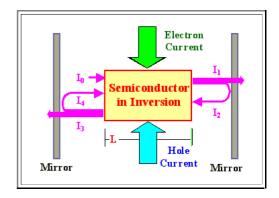
Typical Semiconductor	Dielectric constant	Thermal conductivity [W/cm · K]
Si	11.9	1.5
GaAs	13.1	0,45
GaP	11.1	1.1
GaN	8.9	1.3
SiC	10	5
C (Diamond)	5.8	22




Enabling technology for CD / DVD / Blue ray / ... memory technologies!


- There are always several recombination channels active in parallel
 - Direct band-band recombination; producing light.
 - Defect recombination; not producing light.
 - Auger recombination; not producing light.
 - "Exotic" mechanisms like exciton recombination; producing light in indirect semiconductors like GaP
 - High efficiency LED's need optimized recombination.
- Defect Recomb.

 Direct Recomb.


 Auger Recomb.
- Without "tricks" only a fraction of the light produced gets out of the semiconductor
 - Index grating is essential
 - Avoiding re-absorption is essential
 - Defined recombination volumes are important
- Hetero junctions of the NnP or NpP type are the solution, but create problems of their own
 - Hetero-interfaces must be defect free => Avoid misfit dislocations!
- Laser diodes are similar to LED's but need to meet two additional conditions
- The rate of Stimulated emission, a new process predicted by A. Einstein concerning the interaction of light and electrons in the conduction band, must be at least as large as the rate of fundamental absorption
 - Stimulated emissionresults in two fully coherent photons for one incoming photon and thus allows optical amplification.
 - Strong stimulated emission his requires large non-equilibrium electron concentrations in the conduction band. ⇒strong "pumping" is necessary, moving electrons up to the conduction band just as fast as they disappear by recombination.
 - In semiconductor junctions pumping can be "easily" achieved by very large injection currents across a forwardly biased (hetero) junction.⇒ cooling problem!
- There must be some feed-back that turns an (optical) amplifier into an oscillator for one frequency
 - Feed-back is achieved by partially transparent mirrors.

- Monochromatic output is achieved by the optical resonator forme by two exactly plan-parallel mirrors
- Only wavelengths λ=2L/i (i=integer) that "fit" into the cavity will be able to exist. Together with the condition hν=hc/λ=Eg the Laser wavelength is given
- Semiconductor Lasers now span the range from IR to UV; essential materials are all III-V's, in particular the GaN family.

Molecular beam epitaxy is the deposition method of choice for epitaxial multilayer structures

Exercise 9.3-1
All Quick Questions to 9.