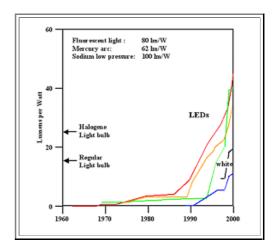
9.1.3 Summary to: 9.1 Optoelectronics - General Concerns


- Optoelectronics has two basic branches:
 - 1. Light in ⇒ electrical signal out:
 - Optical sensors as single elements
 - "CCD" chips in "megapixel" matrices.
 - 2. Electricity in ⇒ light out; in two paradigmatic versions:
 - LED's
 - · Laser diodes
- Here we only look at the second branch.
 - The semiconductors of choice are mostly the III-V's, usually in single-crystalline perfect thin films.
 - The present day (2008) range of wavelength covers the IR to near UV.
 - Indirect semiconductors like GaP can be used too, if some "tricks" are used.
- The index of refraction $n=(\epsilon)^{1/2}$ and thus the dielectric constant ϵ become important
 - Semiconductors have a relatively large index of refraction at photon energies below the bandgap of $n \approx 3 4$.
 - Diamond has the highest n in the visible region
- The *thermal conductivity* becomes important because for generating light one needs *power* (which we avoided as much as possible for signal processing with **Si**!)
 - Again, diamond has the highest thermal conductivity of all known materials - 5 times better than Cu!
- LED's come as cheap little "indicator" lights and recently also as replacement for "light bulbs".
 - Intense white light from LED's becomes possible, Advantages: High efficiencies and long life time
 - The key was the "taming" of the GaN material system for blue and UV LED's.
- LED's based on organic semiconductors (OLED) are rapidly appearing in OLED based displays.
 - Advantage: High efficiencies because of active light generation.

Problem: Product life time; sensitivity to air.

- Semiconductor "Diode" Lasers are high-power" LED's plus "mirrors"
 - Advantage: Small and cheap. Problems: Low power, "Quality".

	Wavelength (nm)	Typical Semiconductor
Infrared	880	GaAlAs/GaAs
Red	660 - 633	GaAlAs/GaAs
Orange to Yellow	612 - 585	AlGainP GaAsP/GaP GaAsP/GaP
Green	555	GaP
Blue to Ultraviolet	470 - 395	GaN/SiC GaN/SiC InGaN/SiC

Typical Semiconductor	Dielectric constant	Thermal conductivity [W/cm · K]
Si	11.9	1.5
GaAs	13.1	0,45
GaP	11.1	1.1
GaN	8.9	1.3
SiC	10	5
C (Diamond)	5.8	22

Enabling technology for CD / DVD / Blue ray / ... memory technologies!

Exercise 9.1-1

All Quick Questions to 9.1