Solution to Exercise 8.1-6

Constructing Quantitative Logarithmic IV Characteristics

First we get a few important relations and numbers.

If 1/kT = 40 eV⁻¹ at 300 K, we have 1/kT = 40 ⋅ 300/400 = 30 eV⁻¹ at 400 K

The current densities j₁ and j₂ can always be written as

<i>j</i> 1 =	c ₁ · <i>n</i> i ²	=	<i>j</i> ₁' · exp–(E _g /kT)	$j_1' = j_1 \cdot \exp(E_g/kT)$
j ₂ =	c ₂ · <i>n</i> i	= .	j₂' · exp–(E _g /2kT)	$j_2' = j_2 \cdot \exp(E_g/2kT)$

This gives us the following numbers:

	The	eory	Measured				
	j1	j2	j1	j2			
Calculated <i>j</i> i'	$2.06 \cdot 10^5 \text{ A/cm}^2$	5.74 · 10 ⁻¹ A/cm ²	$1.29 \cdot 10^{10} \text{ A/cm}^2$	$3.58 \cdot 10^2 \text{ A/cm}^2$			
	<i>T</i> = 300 K						
Starting values <i>j</i> i U = 0 V	$1.6 \cdot 10^{-14} \text{ A/cm}^2$	$1.6 \cdot 10^{-10} \text{ A/cm}^2$	10 ⁻⁹ A/cm ²	10 ⁻⁷ A/cm ²			
Calculated <i>j</i> _i U = 0.5	7.76 · 10 ⁻⁶ A/cm ²	3.52 · 10 ⁻⁷ A/cm ²	0.46 A/cm ²	$2.2 \cdot 10^{-3} \text{ A/cm}^2$			
	<i>T</i> = 400 K						
Starting values <i>j</i> i U = 0 V	9.60 · 10 ⁻¹⁰ A/ cm ²	3.92 · 10 ⁻⁸ A/cm ²	6.01 · 10 ⁻⁵ A/cm ²	2,44 · 10 ⁻⁵ A/ cm ²			
Calculated <i>j</i> _i U = 0,5 V	9.67 · 10 ⁻³ A/cm ²	1,5 · 10 ⁻⁴ A/cm ²					

Now to the questions:

Question 1. Construct rather quantitatively the logarithmic *IV* characteristics (= $\log j - eU$ plot) of two solar cells with the j_2 and j_2 values as given in the table.

Question 2: Determine the open circuit voltage Uoc for room temperature and for 400 K and discuss your finding.

Constructing the graph is easy now; here is the result:

- We note that the "-1" term can be neglected as soon as we have current density values about 10 times larger then the starting values, i.e. below U ≈ 0.1 V. At lower values this term dominates the characteristics by forcing the currents to zero, i.e. to -∞ in a log plot, but that is of no interest here.
- The addition of both curves only introduces a slight "rounding" at the intersection point.

The open circuit voltage follows from the intersection of the j(U) curves with a straight line at j = - j_{Ph}. It is immediately clear that only the j₁ part is of interest here.

The effect of temperature is shown in a separate graph and only for the "theoretical" set of the jph:

While the decreasing slope of the curves would increase **U**_{OC}, the large increase in the starting value of **j**₁ has a much stronger effect and causes a substantial decrease of **U**_{OC} with temperature.