Exercise 8.1-6

Constructing Quantitative Logarithmic IV Characteristics

Question 1. Construct rather quantitatively the logarithmic *IV* characteristics (= $\log j - eU$ plot) of two solar cells with the j_1 and j_2 values as given in the table. Here are a few hints:

- Draw first the straight lines for the two exponential terms resulting from the master equation (i.e. omit the "-1" term) into a log *j eU* plot. Note that for room temperature k*T* = 0.025 eV or exp(e*U*/k*T*) = exp(40 · e*U*). Use the given numbers for the various *j*_i = *j*(*U* = 0V) and calculate, for example, *j*_i(*U* = 0.5 V) to get a second point.
- Correct by "hand" for the "-1" term (justify your reasoning) and add "by hand" the two resulting curves to the *full characteristic*.
- Repeat the procedure for a temperature of 400 K. Note, however, that all j_i contain the intrinsic carrier density n_i and that changing the temperature changes n_i accordingly.

	Calculated	Measured
<i>j</i> 1	1.6 · 10 ⁻¹⁴ A/cm ²	10 ⁻⁹ A/cm ²
j2	1.6 · 10 ⁻¹⁰ A/cm ²	10 ⁻⁷ A/cm ²

Question 2: Determine the open circuit voltage Uoc for room temperature and for 400 K and discuss your finding.

Note: U_{OC} is the voltage where the (positive) forward current in the dark is exactly equal to the magnitude of the photo current I_{PH}

Solution