

Exercise 8.1-3

IV Characteristics of Real Solar Cells

Lets consider a solar cell as described in the backbone, with a built in series resistance R_{SE} and a shunt resistance R_{SH}

- We have the equivalent circuit diagram as shown.
- The shunt resistance takes into account that the huge area of the **pn**-junction of a solar cell might have weak points (locally, e.g. at the edge) which short-circuits the junction somewhat. These defects are summarily described by a *shunt resistor*.
- The constant current source mimics the current generated in the junction by light. It simply defines a current value *I*_{Ph} (not to be mixed up with the terminal current *I*) that is given by the light and added (with a negative sign) to the junction current, i.e. *I*_{junct} = *I*_{diode}(*U*) *I*_{Ph}. The photo current/Ph thus simply moves the total characteristics of the diode downwards on the current scale.
- Take the following schematic curve of the *I-U*-characteristics as a reference and for the definition of the following terms:
 - The **fill factor** is the relation between the area of the large yellow rectangle to the more orange area centered at the **optimal working point.**

- Discuss qualitatively the influence of the *two resistors* (and, as a more minor point, the *idealiy factor n*) on the *IV* characteristics with particular respect to:
 - The open-circuit voltage Uoc.
 - The short-circuit current Isc.
 - The reverse dark current if the solar cell is bisased in the reverse direction.
 - The fill factor FF (the degree of "rectangularism" of the characteristics).
 - The efficiency η which is proportional to Uoc, Isc, and FF, i.e.

 $\eta = const \cdot U_{OC} \cdot I_{SC} \cdot FF$

Link to the solution