Exercise 7.1-1

Class Exercises and Quick Questions to

7.1 MEMS - Products and Developments

- We had the following class exercises:
 - How large is the resistance of a 1 pF capacitor at 10 GHZ?
 - Consider that the layer of whatever it is that forms the cantilever in the picture above would be under <u>tensile stress</u> in its top part (maybe the cantilever consists of two different materials stacked on top of each other). What would happen?
 - Calculate Δ R/R for a rectangular piece of material with length I, width w, thickness t and specific resistivity ρ that is strained by ϵ in I-direction.
 - Give examples of MEMS products, their working principles and raneg of applications.
 - Describe the working principle of a DLP beamer. Consider strengths and problems.
 - Describe the working prinicple of a MEMS gyro. Provide a rough sketch of a possible implementation.
 - Describe possibilites for inducing and detecting mechanical movment in a MEMS device.
 - Compare a gyro or acceleration sensor operated around resonance or at lower than resoance frequencies. Give curves of amplitude and damping as a function of frequency and discuss the role of damping.
 - Give some pricnciples for making actors and compare the relative merits of the approach.