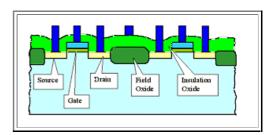
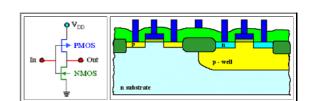
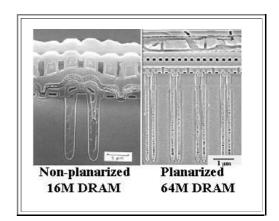

5.4 Summary


5.4.1 Summary to 5: Integrated Circuits - Process Integration


- Integration means:
 - 1. Produce a large number (up to 1.000.000.000) of transistors (bipolar or MOS) and other electronic elements on a cm² of Si
 - 2. Keep thoses elements electrically insulated from each other.
 - 3. Connect those elements in a meaningful way to produce a system / product.
- An integrated bipolar transistor does not resemble the textbook picture at all, but looks far more complicated ⇒.
 - This is due to the insulation requirements, the process requirements, and the need to interconnect as efficiently as possible.
 - The epitaxial layer cuts down on the number of critical diffusions, makes insulation easier, and allows a "buried contact" structure.
- Connecting transistor / elements is complicated; it has to be done on several levels
 - Materials used are AI ("old"), Cu ("new"), W, (highly doped) poly-Si as well as various silicides.
 - Essential properties are the conductivity σ of the conductor, the dielectric constant ∈_r of the intermetal dielectric, and the resulting time constant τ = σ ⋅ ∈_r that defines the maximum signal transmision frequency through the conducting line.
- Integrating **MOS** transistors requires special measures for insulation (e.g. a field oxide) and for gate oxide production
 - Since a MOS transistor contains intrinsically a capacitor (the gate "stack"), the technology can be used to produce capacitors, too.
- CMOS allows to reduce power consumption dramatically.
 - The process, however, is more complex: Wells with different doping type need to be made.

It ain't easy!



- Using the third dimension (depth / height) might become necessary for integrating "large" structures into a small projected are (example: trench capacitor in **DRAMs** ⇒).
 - Unwanted "topology", however, makes integration more difficult.
 - Planarized technologies are a must since about 1995! ⇒

It ain't neither easy nor cheap!

<u>Questionaire</u>	
Multiple Choice questions to 5.	

Exercise 5.4-1
All Questions to 5.

Property	Number
Feature size	0,2 μm
No. metallization levels	4 - 7
No. components	> 6 · 10 ⁸ (Memory)
Complexity	> 500 Process steps
Cost (development and 1 factory)	ca. \$ 6 · 10 ⁹