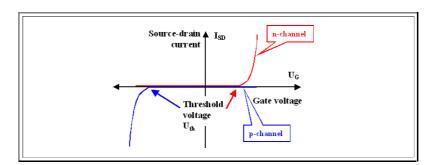
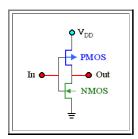
5.1.5 Integrated CMOS Technology

Power Consumption Problem


- The first integrated circuits hitting the markets in the seventies had a few **100** transistors integrated in bipolar technology. **MOS** circuits came several years later, even though their principle was known and they would have been easier to make.
 - However, there were insurmountable problems with the *stability* of the transistor, i.e. their <u>threshold voltage</u>. It changed during operation, and this was due to problems with the gate dielectric (it contained minute amounts of alkali elements which are some of many "**IC** killers", as we learned the hard way in the meantime).
 - But MOS technology eventually made it, mainly because bipolar circuits need a lot of power for operation. Even for all transistors being "off", the sum of the leakage current in bipolar transistors can be too large for many application.
- MOS is principally better in that respect, because you could, in principle, live with only switching voltages; current per se is not needed for the operation. MOS circuits do have lower power consumption; but they are also slower than their bipolar colleagues. Still, as integration density increased by an average 60% per year, power consumption again became a problem.
 - If you look at the data sheet for some state of the art IC, you will encounter power dissipations values of up to 1 2 Watts (before 2000)! Now (2004) its about 10 times more. If this doesn't look like a lot, think again!
 - A chip has an area of roughly 1 cm². A power dissipation of 1 Watt/cm² is a typical value for the hot plates of an electrical range! The only difference is that we usually do not want to produce french fries with a chip, but keep it cool, i.e. below about 80 °C.
- So power consumption is a big issue in chip design. And present day chips would not exist if the **CMOS** technique would not have been implemented around the late eighties. Let's look at some figures for some more famous chips:
 - Early Intel microprocessors had the following power rating:

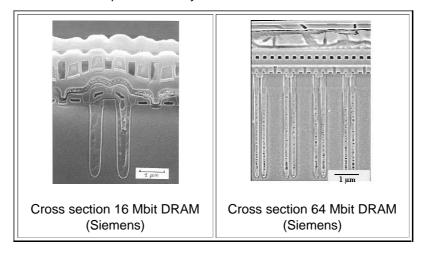
Туре	Architecture	Year	No. transistors	Туре	Power
4004	4bit	1971	2300	PMOS	
8086	16bit	1978	29000	NMOS	1,5W/8MHz
80C86	16bit	1980	?50000?	CMOS	250mW/30Mhz(?)
80386	16bit	1985	275000	CMOS	
Pentium 4		2004		CMOS	80 W/3 GHz


CMOS seems to carry the day - so what is CMOS technology?

CMOS - the Solution

- Lets first see what "**NMOS**" and **PMOS**" means. The first letter simply refers to the kind of carrier that carries current flow between source an drain as soon as the threshold voltage is surpassed:
 - PMOS stands for transistors where positively charged carriers flow, i.e. holes. This implies that source and gate must be p-doped areas in an n-doped substrate because current flow begins as soon as inversion sets in, i.e. the n-type Si between source and drain is inverted to Si with holes as the majority carriers
 - NMOS then stands for transistors where negatively charged carriers flow. i.e. electrons. We have n-doped source and drain regions in a p-doped substrate.
- The characteristics, i.e. the source-drain-current vs. the gate voltage, are roughly symmetrical with respect to the sign of the voltage:

- The red curve may stand for a **NMOS** or **n**-channel transistor, the blue one then would be the symmetrical **PMOS** or **p**-channel transistors. The threshold voltages are not fully symmetric if the same gate electrode is used because it depends on the difference of the Fermi energies of the gate electrode materials and the doped **Si**, which is different in the two cases.
- Anyway, for a given gate voltage which is larger than either threshold voltage applied to the transistor, one transistor would be surely "on", the other one "off".
- So if you always have a NMOS and a PMOS transistor in series, there will never be any static current flow; we have a small dynamic current component only while switching takes place.



- Can you make the necessary logical circuits this way?
- Yes you can at least to a large extent. The illustration shows an inverter and with inverters you can create almost anything!
- Depending on the right polarities, the blue **PMOS** transistor will be closed if there is a gate voltage the output then is zero. For gate voltage zero, the green **NMOS** transistor will be closed, the **PMOS** transistor is open the output will be **V**_{DD} (the universal abbreviation for the *supply voltage*).
- So now we have to make *two* kinds of transistors- **NMOS** and **PMOS** which needs substrates with different kind of doping in *one* integrated circuit. But such substrates do not exist; a Silicon wafer, being cut out of an homogeneous crystal, has always *one* doping kind and level.
 - How do we produce differently doped areas in an uniform substrate? We remember what we did in the bipolar case and "simply" add another diffusion that converts part of the substrate into the different doping kind. We will have to diffuse the right amount of the compensating atom rather deep into the wafer, the resulting structure is called a **p** or **n-well**, depending on what kind of doping you get.
 - If we have a **p**-type substrate, we will have to make a **n**-well. The **n**-well then will contain the **PMOS** transistors, the original substrate the **NMOS** transistors. The whole thing looks something like this:

- By now, even the "simple" **MOS** technology starts to look complicated. But it will get even more complicated as soon as you try to put a metallization on top. The gate structure already produced some "roughness", and this roughness will increase as you pile other layers on top.
 - Let's look at some specific metallization problems (they are also occurring in bipolar technology, but since you start with a more even surface, it is somewhat easier to make connections).
 - A cross-section through an early **16 Mbit DRAM** (**DRAM=**Dynamic Random Access Memory, the work horse memory in your computer) from around **1991** shown below illustrates the problem: The surface becomes exceedingly wavy. (For enlarged views and some explanation of what you see, click on the image or the link)
- Adding more metallization layers becomes nearly impossible. Some examples of the difficulties encountered are:
 - 1. With wavy interfaces, the thickness between two layers varies considerably, and, since making connection between layers need so-called "via" holes, the depths of those vias must vary, too. This is not easily done! And if you make all vias the same (maximum) depth, you will etch deeply into the lower layer at places where the interlayer distances happens to be small.
 - 2. It is very difficult to deposit a layer of anything with constant thickness on a wavy surface.
 - 3. It is exceedingly difficult to fill in the space between AI lines with some dielectric without generating even more waviness. The problem then gets worse with an increasing number of metallization layers.

The **64 Mbit DRAM**, in contrast, is very flat. A big break-through in wafer processing around **1990** called "**Chemical mechanical Polishing**" or **CMP** allowed to planarize wavy surfaces.

It's time for an exercise:

State of the Art

Lets get some idea about the state of the art in (CMOS) chip making in the beginning of the year 2000. Above you can look at cross-sectional pictures of a 16 Mbit and a 64 Mbit memory; the cheap chip and the present work horse in memory chips. The following data which come from my own experience are not extremely precise but give a good impression of what you can buy for a few Dollars.

Property	Number			
Feature size	0,2 μm			
No. metallization levels	4 - 7			
No. components	> 6 · 10 ⁸ (Memory)			
Power	several W/cm ²			
Speed	600 MHz			
Lifetime	> 10 a			
Price	\$2 (memory) up to \$ 300 (microprocessor)			
Complexity	> 500 Process steps			
Cost (development and 1 factory)	ca. \$ 6 · 10 ⁹			

- How will it go on? Who knows but there is always the official semiconductor roadmap from the Semiconductor Industry Associaton (SIA)
 - That's it. Those are holy numbers which must not be doubted. Since they are from 1993, the predictive power can be checked.

Semiconductor Industry Association Roadmap (1993)										
		1992	1995	1998	2001	2004	2007			
Feature size (μm)		0.5	0.35	0.25	0.18	0.12	0.1			
Dita/Chin	DRAM	16M	64M	256M	1G	4G	16G			
Bits/Chip	SRAM	4M	16M	64M	256M	1G	4G			
Chin size (mm²)	Logic / microprocessor	250	400	600	800	1000	1250			
Chip size (mm²)	DRAM	132	200	320	500	700	1000			
Dorformoneo (MU=)	on chip	120	200	350	500	700	1000			
Performance (MHz)	off chip	60	100	175	250	350	500			
Maximum navier (M/ahin)	high performance	10	15	30	40	40-120	40-200			
Maximum power (W/chip)	portable	3	4	4	4	4	4			
Device cumply voltage (V)	desktop	5	3.3	2.2	2.2	1.5	1.5			
Power supply voltage (V)	portable	3.3	2.2	2.2	1.5	1.5	1.5			
No. of interconnect levels - logic			4-5	5	5-6	6	6-7			
Number of I/Os			750	1500	2000	3500	5000			
Wafer processing cost (\$/cm ²)			\$3.90	\$3.80	\$3.70	\$3.60	\$3.50			
Wafer diameter (mm)			200	200-400	200-400	200-400	200-400			
Defect density (defects/cm ²)			0.05	0.03	0.01	0.004	0.002			