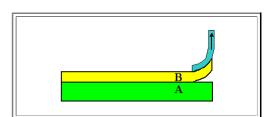

3.2.4 Summary to: 3.2 Mechanical Properties

- Thin films have other spatial properties besides their thickness, i.e. roughness
 - Interface roughness and surface roughness R defined by their "root mean square".

$$R = \left(\frac{1}{-} \sum_{i=1}^{N} z_i^2\right)^{1/2}$$


- Useable thin films adhere to their substrate.
 - A direct measure of adhesion is the interfacial energy γ_{AB} between film A and substrate B.
 - The phase diagram provides some guideline. Complete miscibility = good adhesion, (eutectic)) decomposition =(?) low adhesion. Calculations of γ are difficult.
 - Full adhesion can only be obtained for films grown on a substrate. Adhesion energies can be measured.

A major source of strain is the difference of the thermal expansion coefficients α


$$\epsilon_{\mathsf{TF}} = \Delta \mathbf{T} \cdot \Delta \alpha$$

$$\sigma_{\mathsf{TF}} = \mathbf{Y} \cdot \Delta \mathbf{T} \cdot \Delta \alpha$$

Stress and strain in thin films can be large and problematic!

- Stress in thin films may relax by many mechanisms; and this might be good or bad:
 - · Cracking or buckling
 - · Plastic deformation
 - · Viscous flow
 - Diffusion
 - · Bending of the whole system (Warpage)
 - Warpage can be a serious problem in semiconductor technology.

Exercise 3.2-1

All Questions to 3.2