2.1.4 Summary to: 2.1 General Chemistry and Structure - Structure and size matter! - Mostly we need single crystals, as perfect (and as large) as possible - Either in bulk, or thin films - If thin film, substrates matter. - For some applications (solar cell , LCD, ...) polycrystalline or amorphous semiconductors are used. - "CIGS" or CdTe for solar cells. - Amorphous or poly-Si for LCD transistor matrix. - Important elemental semiconductors are Si and marginally Ge. - Forget Se, C, P, As and B. - Compound semiconductors are important. - Group IV and compounds: SiGe, SiC. III-V compounds (AI, Ga, In) - (N, P, As, Sb). Important GaAs, Ga_xAI_{1-x}As, GaP, InP, .. Chalkogenides $A_xB_y(S, Se, Te)_2$. Important "CIGS" = $CuIn_xGa_{1-x}Se_2$. "Newcomers" like organic semiconductors, Metal oxides (e.g. TiO₂). - Properties matter! Some properties are rather independent of the structure (= defects), others can be structure sensitive - What counts in the end are products that sell and make a profit! - Besides the direct semiconductor products, there are also products that contain semiconductors (PC's, Cars, TV's, any modern machine,...) and products that are needed to make semiconductor products (crystal growers, ovens, plasma etchers, ion implanters, ..). | Typical Si
wafer: | 300 mm , 850 μm thick, perfect single crystal | | |----------------------|---|--| | Solar cell: Si | Single crystalline, bulk. Poly crystalline, large grain, bulk. Polycrystalline, micro grain, "thick" film Polycrystalline, nano grain, thin film. Amorphous (plus H), thin film | | | Some important Properties | Remarks | | |---|------------------------|--| | Lattice type, lattice constant | | | | Melting point, diffusion constants | | | | Bandgap type and energy | Structure independent | | | Dielectric constant | | | | Thermal expansion coefficient | | | | Doping range | | | | Transport of electron / holes (mobility, life time, diffusion length, | Structure
dependent | | | Unwanted levels in bandgap | | | Integrated circuits, Solar cells, Liquid crystal displays, Micro electronic and mechanical systems, Light emitting diodes, (Diode) Lasers, Sensors, ... ## **Exercise 2.1-1** **All Class Exercises to 2.1**