
Free Electron Gas in Crystals with Unequal Dimensions

If we consider a crystal with dimensions Lx, Ly, Lz, it has the volume V = Lx· Ly· Lz.

All we have to do is to replace the periodic boundary conditions ψ(x + L) = ψ(x) by:

ψ(x + Lx, y, z)  = ψ(x , y + Ly, z)  = ψ (x, y, z + Lz)  = ψ(x, y, z)

This leads to simple expressions for the allowed wave vectors k:

kx  = 0,    ±
2π

Lx

,    ±
4π

Lx

,    ...

       

ky  0,    ±
2π

Ly

,    ±
4π

Ly

,    ...

       

kz  0,    ±
2π

Lz

,    ±
4π

Lz

,    ..

The pre-exponential factor, which was (1/L)3/2, now changes to (1/V) 1/2.

Since all relevant quantities are usually expressed as densities, i.e. divided by V, and the quantization of k is usually
given up in favor of a continuous range of k's, we may just as well stick to the more simple description of a crystal
with equal sides - the results are the same.
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Averaging Vectors

Let's look at bit closer at the averages one can take by considering a (localized) swarm of summer flies "circling"
around like crazy, so that the ensemble looks like a small cloud of smoke. Check, maybe this Basic module first, if
what follows seems a bit advanced.

"Localized" means that the swarm maintains a defined form (on average), so all flies are always inside this
defined volume in space.
In the case of the charge carriers in a piece of metal, it simple implies that the carriers stay inside the piece of
metal.

First we notice again that while the individual fly moves around quite fast, its average vector velocity <vi>t , averaged
over time t, must be zero as long as the swarm as an ensemble doesn't move.

In other words, the flies, on average, move just as often to the left as to the right etc. The net current flowing
through some surface produced by all flies at any given instance, or by one individual fly after sufficient time is
obviously zero for any reference surface you care to chose. This is illustrated schematically below.
 

On the left hand picture 13 velocity vectors of an
individual fly are shown; the chain of vectors
closes so < vi>t = 0.

  On the right hand picture the same 13 velocity
vectors are assigned to 1 fly each to demonstrate
that the ensemble average treated below yields
the same result, i.e. < ve> = 0, provided that
each and every fly does the same thing on
average.

 
The average of the magnitude of the velocity of an individual fly, <|vi|>τ = <vi>t, however, is obviously not zero - the
fly, after all, is buzzing around at high (average) speed. Note the details in the equation above: Only the underlining of
v is different!

If we define <vi>t as follows, we have a simple way of obtaining the average of the magnitude (we take only the
positive root, of course) .
 

<vi> t  = + <(v2 i)1/2>t

 
v2 is a scalar, and the (positive) square root of v2 gives always the (positive) magnitude of v; i.e. |v|

 

This is an elegant and workable definition, but
beware:
<(v 2)1/2> is not the same as
(<v2> )1/2!
Lets try it with a few arbitrary numbers      ⇒

|v| = 3 4 6

<(v2)1/2> = <(9 + 16 + 36)1/2> = (61)1/2/3 = 4,47

(<v2 >)1/2 = [(9 + 16 + 36)/3]1/2 = 20,331/2 = 4,51

 
If we have <v>t = < (v2)1/2>t , we may also calculate the average (over time) of the velocity components in x, y, and z
-direction, <vx>t , <vy>t , <vz>t , of an individual fly for a truly random movement. (We drop the index "i" now to
make life easier).

Again, the vector averages <v x> and so on of the vector components must be = 0 because in a truly random
movement the components in + x and - x direction and so on must cancel on average.
Since the magnitude |A|of a vector A is given by the square root of the scalar product of the vector with itself . We
have

A · A  = Ax · Ax + Ay · By + Az · Az = A2

   
A  = |A|  =  (A2)½  
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Since

<v2>t  = <vx2>t + <vy2>t + <vz2>t   ,

and since in a truly random movement we have

<vx> t  = <vy>t = <vz >t   ,

we end up with

<v2> t  = 3 <vx2 >
   

<vx2> t  = = 1/3 <v2>    .

From this we finally get

<vx> t  = <(vx2 )½>t  = (1/3)½  · <(v2)½ >t  = 
< v>t

3½

In real life, however, the fly swarm "cloud" often moves slowly around - it has a finite drift velocity vD.

vD  = <vi>t

In consequence, <vi> t is not zero, and <vi, +x > t (= average velocity component in +x direction) in general is
different from <vi, –x > t.
Note that the drift velocity by definition is an average over vectors; we do not use the < > brackets to signify that
anymore. Note also, that the drift velocity of the fly swarm and the drift velocity of an individual fly must be
identical if the swarm is to stay together.
Without prove, it is evident that vD, i, x = <vi ,+x>t - <vi, –x>t and so on. In words: The magnitude of the
component of the average drift velocity of fly number i in x-direction is given by the difference of the average
velocity components in +x and –x direction.

This induces us to look now at the ensemble , the swarm of flies. What can we learn about the averages taken for the
ensemble from the known averages of individual flies?

As long as every fly does - on average - the same thing, the vector average over time of the ensemble is identical
to that of an individual fly - if we sum up a few thousand vectors for one fly, or or a few million for lots of flies does
not make any difference. However, we also may obtain this average in a different way:
We do not average one fly in time obtaining < vi>t , but at any given time all flies in space.

This means, we just add up the velocity vectors of all flies at some moment in time and obtain <ve >r , the
ensemble average. It is evident (but not easy to prove for general cases) that

< vi>t  = <ve>

i.e. time average = ensemble average. The new subscripts "e" and "r" denote ensemble and space, respectively.
This is a simple version of a very far reaching concept in stochastic physics known under the catch word
"ergodic hypothesis".

This means that in "normal" cases, it doesn't matter how averages are taken. This is the reason why text books are
often a bit unspecific at this point: It is intuitively clear what a drift velocity is and we don't have to worry about how it
is obtained. It also allows us to drop all indices from now on whenever they are not really needed.

In our fly swarm example, the drift velocity < vD> = <vi> is usually much smaller than the average < vi> of the
velocity magnitudes of an individual fly.
The magnitude of <vD> is the difference of two large numbers - the average velocity of the individual flies in the
drift direction minus the average velocity of the individual flies in the direction opposite to the drift direction.
This induces an asymmetry: From a knowledge of the drift velocity only, no inference whatsoever can be made
with regard to <vi, +x> , <vi, –x> or <vi> whereas knowlegde of <vi, +x> and <vi, –x> tells us all there is to know in
x-direction
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This teaches us a few things:

1. Don't confuse <v> with <v>. The first quantity - for our flies - is zero or small, whereas the second quantity is
large; they are totally different "animals".
2. This means in other words: Don't confuse the property of the ensemble - the drift velocity vD of the ensemble or
swarm - with the properties of the individuals making up the ensemble.
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Fermi Distribution for Dopant Levels

The correct Fermi distribution for most dopant levels, i.e. the probability that an electron is occupying an energy level
belonging to a dopant atom is

f(E, EF, T)  = 

1 

½ · exp 


E n – EF

kT


 + 1

The reason for the factor 1/2 instead of the usual 1 is that there is a spin degeneracy, i.e. the energy is the same
for different spins.
fDop (E,T) is thus the probability that the level is occupied by an electron of either spin. This applies to group III
acceptors, or group V donors as doping elements for group IV semiconductors.

There also might be cases were dopants can accommodate two electrons (which then must have paired spin). The
Fermi distribution formulated for acceptors in this case is

f( E, EF , T)  = 

1 

2 · exp 


En – EF

kT


 + 1

If we allow also excited states of the dopant, we obtain the fully generalized Fermi distribution

f(E r, EF , T)  = 

1 

Σgr · exp 


E r – EF

kT


 + 1

With Er = energy of the r-th state; gr = degeneracy/spin factor.

Interesting, but rather irrelevant as long as we simply assume completely ionized donors and acceptors.
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More to Recombination

Some General Remarks

In the treatment given so far, we looked at the direct recombination in direct semiconductors (producing light), and the
recombination via deep levels in indirect semiconductors.
The theory behind it all was the Shockley-Read-Hall (SRH) theory. What is left to do is:

Expand the SRH model.

Discuss recombination mechanisms not intrinsically contained in the SRH model - for example "Auger"
recombination with a conduction band electron as a third partner, or recombination via "excitons". Whatever it is, it
will become important later, as you can glimpse by activating the links.

Lets start by looking a bit more closely at the results we already obtained from the SRH theory. The final formula for net
recombination via deep levels was

R  =  UDL  =  

v · σe · NDL · (ne · nh   –  ni 2)

ne +  nh  +  2ni · cosh
EDL – EMB

kT

With R = net recombination rate under non-equilibrium conditions, NDL = concentration of deep levels, EMB = mid-
band level, v = (group) velocity of the electrons (and holes), and σe = scattering cross section of the electron (or
hole).

That we are considering non-equilibrium is evident from the term ne · nh – ni 2 which would be zero for equilibrium,
according to the mass action law.

So far we considered non-equilibrium situations where ne · nh > ni2, and then the recombination rate must be larger
than in equilibrium; R > 0, which is born out by the equation above.

Now just for the hell of it, lets reverse the situation and assume that ne · nh < ni2 , i.e. that we have not enough carriers
of both kinds around.

As we will see later, this is a rather common situation in reversely biased pn-junctions. Lets see what kind of
information we can draw from our equation above. It will lead us to the concept of the " generation lifetime "
 

Generation Lifetime

The condition ne · nh < ni2 implies that the quasi Fermi energy for electrons is lower than that for holes, i.e. EF e < EF
h. Lets see what that implies in a little picture

On the left we have equilbrium, with a somewhat higher density of electrons than holes - the material is (barely) n-
type. In the middle we have the typical situation for non-equilibrium with excess carriers of both types (e.g. because
we generate electron - hole pairs by illumination and draw a photo-current). The population density of both carrier
types is increased; EFe > EFh .
On the right we have the hypothetical situation that EF e < EFh, the population density is now decreased for both
carrier types.

This means that ne · nh << ni2 , and in a first approximation we may simply replace (n e · nh – ni2) by –n i2. This yields
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UDL  = 
v · σ e · NDL · (– ni )

2cosh [(EDL -– EMB)/kT]

The first essential result is that UDL is now negative.

Since UDL was the difference between recombination and generation, we now have a net generation rate of
carriers with a rate UDL as given above.
We may thus equate UDL with Gnet , the (net) generation rate: UDL = Gnet

Now we use a little trick and simply define a generation life time τG by

UDL  =  Gnet  :=  
ni

τG

Insertion and comparison gives us for τG

τ G  = 

2cosh
EDL – EMB

kT 

v · σe · NDL

We could have used this trick before, too, for a relatively general definition of the recombination life time τR. Let's see
how it goes.

We start with the equation for small deviations of the carrier concentrations from the equilibrium values for U DL
which we can identify as the net recombination rate Rnet in this case

U  = Rnet  =  v · σe·NDL ·  
[ne(equ)  +  ∆ n] · [nh(equ)  + ∆n]  –  ni2

ne (equ)  +  nh(equ)  +  2 ∆n  +  2ni · cosh[(EDL - EMB)/kT]

With ∆n << ne, nh, and ne(equ) · nh(equ) = ni2 , we can simplify this equation to

Rnet  = 
v · σe · NDL · ∆n

1 + [2ni/(ne (equ) + nh(equ))] · cosh[(EDL – EMB )/k T ]

Again we define τR by Rnet := ∆n/τ R , which gives us as a relatively general formula.

τR = 
1 

v · σe · N
 · 





1  + 




2ni

ne(equ)
 +  nh(equ) · cosh

EDL – EMB

kT







  

We see immediately that for doped semiconductors, i.e. ne(equ) or nh(equ) >> ni, we get the old result

τ R = 
1

v · σe · NDL

It is interesting to note that the dependence of the two life times τR and τG on the exact position on the deep level in the
band gap is not symmetric.

τG is much more sensitive to the exact position, as is shown in the picture containing both general functions (still
containing the cosh term).
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As we must expect, τG = 2τR if the deep level is exactly in midband position. For deviation from the middle position,
the generation life time can be much larger then the corresponding recombination life time.

Surface Recombination

In real life, deep levels are not always distributed homogeneously in the bulk, but may only exist at internal or external
surfaces (i.e. grain boundaries, interfaces, or simply the surface of the semiconductor. We will only use the word
"surface" from now on which stands for all kinds of interfaces.

In this case we have to introduce an area density or surface density of deep levels, NsDL, and our recombination
(or generation) rates are now confined to the interface in question, denoted by Rs or Gs, respectively.

If we add possible surface states to the general mechanism of the SRH theory, we obtain for Us, the net recombination
(or generation) rate at the surface (be happy that we do not deduce this formula!):

Us  =  Rsnet  =   

v · σe · σh · NsDL · (ne,s · nh,s  –  ni2)

σe ·




ne,s  +  ni · exp  
EDL - EMB

kT





+  σh ·




nh,s  +  n i · exp 
E DL  –  EMB

kT





With the scattering cross sections separately given for electrons and holes, and with the n e/h,s denoting the volume
concentrations at the surface(?)

What is the ne/h,s, the volume concentration of the carriers at the surface

First, it is a surface concentration, i.e. measured in particles per cm2 or just cm–2

Second, it is what you would have on a slice cutting through the volume of a crystal. In other words, we have for a
lattice constant a, which is the smallest meaningful thickness of a slice in a crystal

ne/h,s  = ne/h · a

However, it would be too simple minded to just take the bulk values of ne/h! In general, there will be some band-bending
near the surface, induced by the same deep levels (called "surface states" in this case, that give rise to the surface
recombination. Look at the consideration of a simple junction to see how it works.

So you first must determine the volume concentration at the surface under the prevailing conditions and then convert
it to surface concentrations..

OK, now we know what the symbols in the formula mean, but what can we do with it?

Well, lets make some approximations to see what happens. First, as always, we consider the simple case of small
deviations from the equilibrium values of n e/h,s, ie. ne/h,s = ne/h,s(equ) + ∆ns and ∆ns << ne/h,s; moreover, we
assume that σe = σ h = σ.
We now are familiar with this approach, and obtain

U  =  Rnet  =  
v · σ · NsDL · ∆ns

  := Sr · ∆ ns

1  +  2ni/[ n e,s(equ) + nh,s(equ)] · cosh[(EDL – EMB)/kT]
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This looks rather familiar

Again the recombination rate at the surface is proportional to the excess carrier density (at the surface), and we define

U = Rnet := Sr ·∆ns , and the quantity Sr  is for surfaces what the recombination time τr (or to be more precise: 1/τ
r) is for the bulk.
Since now ns is a surface concentration (yes! it is confusing), Sr must have the dimension cm/s, it is therefore
called the surface recombination velocity.
As before, noting that ni/(ne,s(equ) + nh,s) << 1 under normal conditions, we may simplify to

Sr  ≈   v · σ

If we again play the game from above, switching recombination into generation, we obtain the surface generation
velocity Sg

Sg  = 

v · σ · NsDL

cosh 
EDL – EMB

kT

Ok - you get the drift. But what does it signify?

Well, we have seen that it is fairly easy to "kill" the (bulk) life time by minute contaminations of some contaminants
in the bulk of the crystal. It is even easier to kill the surface recombination velocity, i.e. make it very large.
And while a short volume life time is usually (but not always) pretty bad for devices, a large surface (or really
interface) recombination or generation velocity is very bad for sure .
This is one reason why the Si/SiO2 interface has been such a tremendous success story: Its interface
recombination velocity can be exceedingly small, say 0,1 cm/s. But just getting some process parameters wrong a
little bit while making the oxide, may change that dramatically - you may have surface recombination velocities
several orders of magnitude larger.
Unfortunately, many interfaces have recombination velocities far larger, even in the best cases! "Passivation" of the
interface or surface states, usually including some heating in hydrogen atmosphere and some black magic, is an
overwhelmingly important part of semiconductor technology. There is a special module devoted to some of these
topics.
 

Other Channels of Recombination

So far we have covered direct recombination and recombination via deep levels. Each mechanism is called a
recombination channel for obvious reasons, but there are more than just the two channels considered so far.

Some more mechanisms will be covered in other parts of the Hyperscript, here we just give an overview.

Important at high doping levels is the Auger recombination.

In this case, the energy (and momentum) of the recombining electron - hole pair is transferred to a second electron
in the conduction band.
This is a recombination channel that always allows recombination in indirect semiconductors and thus puts an
absolute limit to the life time. It is clear that the probability of such an event requires that three mobile particles - two
electrons and one hole - are about at the same place in space; its probability thus can be expected to increase with
increasing carrier density.

Another mechanism is recombination via shallow states, especially via the energy level of the dopant atoms. This
includes transitions from a donor level to an acceptor level or to the valence band, and transitions form the conduction
band to an acceptor level.

This mechanism is especially active at low temperatures (when there are free state at that levels). It is not very
different from band-band recombination for direct semiconductors and can be treated as a subset of his case.

Finally, there is recombination via excitons . This is a very important mechanism for some semiconductors, in particular
GaP, because it allows an indirect semiconductor to behave like a direct one, i.e. to emit light as a result of excitonic
recombination.

What is an exciton? And how does it achieve the remarkable feat mentioned above. Well, activate the link above
(getting ahead of yourself in the lecture course) and find out.
 

Several Recombination Channels in Parallel
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What happens if the carriers have several possibilities for recombinations; i.e. several recombination channels exist in
parallel?

For example, if Auger recombination is comparable in likelihood to direct recombination - what will happen?

Again, this is covered in some detail in chapter 5, here we only note the important principle:

The various processes are independent of each other, i.e. the channels are switched "in parallel".

The total recombination Rtotal and the effective recombination time τtotal are simply given by.

Rtotal  = R1 + R2 + R3 + ...  

1

τtotal

 = 
1

τ1

  +  
1

τ2

  +  
1

τ3

  +  ...

Appendix : Changing from Volume to Surface Concentration

Changing from volume to surface concentration might be a bit confusing, especially for mathematicians.

If you imagine a distribution of (mathematical) points in space with an average density of nv , and then ask how large
is the density of points ns on an arbitrary (mathematical) plane stretching through the volume, the answer is ns = 0,
because mathematical points are infinitely small and mathematical planes infinitely thin - you never will cut a point
with a plane this way.
Our "points", however, are atoms - they are not infinitely small. Our planes are not infinitely thin either, their minimal
useful thickness corresponds to the size of an atom, or to a lattice constant.

So in computing a surface density of atoms, you can do two things:

1. You actually count the atoms lying on the chosen plane of the crystal (making sure you know if you want your
density for a lattice plane or for crystallographically equivalent sheets of atoms in a crystal (This is not the same: the
density of atoms on a {110} atomic layer of a fcc crystal is only ½ of that of a {110} lattice plane ; if you don't see it,
make a drawing!).
2. You just take the atoms contained in a sheet with thickness a. Its volume thus is A · a for an area of A cm2.
Since a volume of 1 cm3 contains nv particles, a volume of A · a contains nv · A · a particles; the surface density
nS thus is

nS  = 
nv · A · a

A
 =  = nv · a
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Alternative Derivation of the Einstein Relation

In this derivation we consider the forces acting on carriers and the currents resulting from these forces.

The important point to know is that within the general framework of mechanics and thermodynamics, forces are
generalized and expressed as the (space) derivatives of thermodynamic potentials.
In particular, diffusion currents due to concentration gradients of the diffusing species may be seen as an
expression of a chemical force Fchem that acts on particles. We call it chemical because it tends to change
particle numbers.
The value of the chemical force is always given by the derivative of the chemical potential; looking at a one-
dimensional case we thus have

Fchem, x  =  F  =  –  
dµchem

dx
 =  –  

dEF

dx

Of course, we will never confuse µchem, the chemical potential, with µ, the carrier mobility!

Looking at the most general case with only local equilibrium in the bands, we use the Quasi-Fermi energies, EF e and
EFh, given by

EFh   =   EC  –  kT · ln 
Neeff

ne
    

EFh   =   EC  +  kT · ln 
Nheff

nh

We thus have for the chemical forces

Fe  =  –  
d EFe

dx
 =  – 

dEC

dx
 + 

kT 

ne
 · 

dne

dx

Fh  =  –  
dEFh

dx
 =  – 

dEA

dx
 + 

kT 

nh
 · 

dnh

dx

In what follows we drop the indexes "e" and "h" and write only one set of equations for the conduction band ( i.e.
for electrons). For holes everything is the same, both equations can be retrieved at the end by proper indexing.

We allow for the band edges to be functions of x, i.e. EC = EC(x) and EV = EV(x). What then determines the
numerical value of the band edge energy (for some defined zero point of the energy)? There are two factors:

The particular kind of semiconductor or crystal considered - this defines the band structure in general. We call
this part E Cryst, and note, while ECryst is constant in semiconductors of one kind of material (and omitted from
formulas), it generally may be a function of x . Examples are materials with compositions that change gradually
(e.g. Si-Ge alloys, or GaAlAs with "sliding" Ge or Al concentration, respectively).
External or internal electrical field Ex = – dV(x)/d x due to the electrostatic potential V( x) that must be
superimposed on the band energies as – |e|V with |e| = magnitude of the elementary charge. In the following we
drop the magnitude signs for the sake of convenience. ( We will write the electrical field Ex in pink here, to avoid
confusion with the various energies).

We thus can write

d EC

dx 

 = 
dECryst

dx 

 +  e · Ex
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This yields for the force

Fchem  =  – 
dECryst

dx 

 –  e  · Ex  –  
kT

n
 ·  

dn

dx

The chemical force will cause a particle movement exactly as an electrical force (which is now a part of the chemical
force). The result is the same as in the basic treatment of the electrical conductivity: There will be a constant average
drift velocity in the direction of the force and we obtain

<vchem> = average velocity due to the chemical force = const. · Fchem.

For an electrical field Ex in x-direction, we had
< velect> = average velocity due to the electrical force Felect = e · Ex.
<velect > must be a constant and we defined < velect>/Ex = mobility µ, or

<velect>

Felect

 = 
µ

e

Since the scattering processes that caused < velect> to be constant are the same for all forces, the proportionality
constant between force and average velocity must be the same, too. We thus can write

< vchem>/F chem = µ/e or (dropping indexes for convenience again):

< vchem> =  v  =  
µ

e
 · Fchem

The electrical current carried by this velocity is

j  = e · n · <vchem >  =  n · µ ·  
dE(x)Cryst

dx 

  +  e  · n · µ ·Ex (x)  –  µ · kT ·
dn( x )

dx

If we now consider the usual case of a semiconductor with E( x )Cryst = const., and a zero net current (j = 0), we are
left with

e · n · µ · Ex  –  µ · kT  ·
dn

dx
 = 0

The second term is an (electrical) current due to a concentration gradient which, according to Ficks first law,
always can be written as

j  =  –  e · D ·
dn

dx

We thus can always equate

D  = 
µ · kT

e

And this is the Einstein-Smoluchowski relation.
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Substituting this in the equation above, we get exactly the same equation as in the first derivation

n · µ · Ex  =  D ·
dn

dx

The consideration of the currents caused by the chemical force, however, is much more general. The arguments used
would also apply for the case where ECryst is not constant and we will come back to this when discussing
heterojunctions or graded semiconductors.
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Solving the Poisson Equation for pn-Junctions

We have the general equation for the space charge ρ(x ), and the Poisson equation:

ρ(x)  = e · {nh(x) – ne(x ) + N+ D(x) – N–A(x )}

ε ε0 ·  
d2V(x)

dx2
 = – ρ (x)

V(x) is the built-in potential resulting from the flow of majority carriers to the other side.

We consider a solution for the following conventions and approximations:

The zero point of the electrostatic potential is identical to the valence band edge in the p-side of the junction
shown in the illustration.
All dopants are ionized, i.e. NA = N– A = nh, and ND = N+ D = ne. This is always valid as long as the Fermi level
is not very close to a band edge.

For the carrier density we have the general expression

ne,h  = Neffe,h  · exp –
∆ E

kT

and ∆ E was ED – EF for electrons and E – EA for holes.

If ED, A is a function of x because the bands are bent (while EF stays constant), we may write the energy
difference as ∆E = ∆E0 + e · V(x) with ∆E = ∆ E0 referring to the situation without band bending.
The carrier concentration than becomes

n  =  Neff · exp – 
∆E + eV( x)

kT
 = N eff · exp –

∆E

kT
  · exp –

eV(x)

kT
         

 =  NA,D · exp –
e · V(x)

kT
           

because the first term gives the concentration for V(x) = 0 and that is the dopant concentration in our
approximation.
We thus have for the carrier concentrations in equilibrium anywhere in the junction:

nh (x)  = NA · exp  –  
e · V(x)

kT
 

    

ne(x)  = ND · exp – 
e · {V(x) - V(n}

kT

As soon as V( x) deviates noticeably from its constant value of  0 or V(n) - in other words: inside the space charge
region - the carrier concentrations decrease exponentially from their values NA or ND far outside of the SCR. We
therefore approximate their concentration by
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nh  = NA  for  x  <  – dA
       

nh  = 0  for  x  >   – dA 
       

ne   = ND  for  x  >  d 
       

ne  = 0  for  x  <  d 

With dA, dD = boundaries of the space charge region with x = 0 at the geometrical junction

The space charge then is only given by the concentration of the dopants. That's where we could have started right
away, just plugging in the usual assumptions. We have

ρ  = N A  for  – dA  < x   <  0
       
ρ  = ND  for  0  <  x  <  dN
       
ρ  = 0  for  everywhere else

The Poisson equation then becomes

d2V

dx2
  =  0 for – ∞  <  x  <  –dA

        
d2V

dx2
  = + 

e 

εε0

NA  for  – dA < x   <  0

        
d2V

dx2
  = –  

e 

ε ε 0

ND  for  0  <  x  <  dD

        
d2V

dx2
  = 0  for  dD  <  x < ∞

In addition we have the boundary conditions:

V  = 0 





  for

 

x   =  – dA

    
dV

dx 
 = 0  

       
V  = V( N) 






   for

 

x  =  dD

    
dV

dx
 = 0  

      
dA · NA  = dD · ND  Charge neutrality    

The solutions are easily obtained, they are
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VA(x)  = 
e 

2εε0

 · NA · (dA + x)2   for      – dA  <  x  <  0

VD(x)    = V(n)  –  
e 

2 εε0

· NA · (dD  –  x )2  for         0  <  x  <  dD

V(n)      =   
e

2ε ε 0

(NA · dA2   +  ND · dD2)

The last equation comes from the condition of continuity at x = 0, i.e. VD(x = 0)  =  VA(x = 0.

The two limits of the space charge region, dA and dD , as well as the field strength E = – dV/dx in the SCR thus
could be calculated if we would know V(n).

V(n), of course, is the difference of the potential across the SCR and thus identical to 1/e times the difference of
the Fermi energies before contact in thermal equilibrium, we have

V(n)  =  –  
E nF  –  E pF

e 

If we superimpose an external voltage U, V(n) becomes (watch out for the correct sign!) .

V(n )  = 
E nF   –  E pF

e 

 ± eU 

The following illustration shows the whole situation in one drawing.
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We now can express the width dSCR of the space charge region as

dSCR  =  dA  +  dB  =  
 1 

e





2 εε0 · [∆EF + e ·Uex] ·




1

NA

 + 
1

ND



  



  

1/2

∆EF refers to the the difference of the Fermi energies before the contact and Uex is the external voltage.
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Forward Currents from the Space Charge Region

Again, we start from the equation for the net recombination UDL via deep levels

UDL  =  

v · σ e · NDL · (ne · nh  –  ni2)

ne +  nh  +  2n i · cosh
EDL – EMB

kT

   =     

1/τ · (ne · nh  –  ni2)

ne +  nh  +  2ni · cosh
EDL – EMB

kT

with 1/τ = v ·σ e ·NDL as we know by now.

 
The carrier densities ne and n h may be expressed via their Quasi-Fermi energies as E Fe and EFh , respectively. For
their product we get

ne · nh  = ni2 · exp –  
EFe – EFh

kT 

For the forward direction we have EFe – E Fh < 1 and thus

ne, nh  >> ni

This leaves us with

UDL  = 
1

τ
  ·  

ne · nh

ne  +  nh

The maximum value for U DL gives the upper limit for the net recombination rate and thus the maximum current due to
recombination in the SRC, too. The maximum is defined by

∂{(ne · nh)/( ne + nh)}

∂ne
  = 

∂{(ne · nh)/(ne + nh)}

∂nh
 =  0

which gives us ne = nh for maximum current. With ne · nh = ni 2 · exp – [(EFe – EFh )/k T] from above, we have

ne =  nh  = ni · exp – 
E Fe  –  EFh

2kT  

What we need now is an equation for the difference of the Quasi-Fermi energies. Lets look at the situation in a band-
diagram
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Whatever the exact positions of the Quasi-Fermi energies, their difference E Fe – EFh is about equal to the
difference in the bulk Fermi energy and thus

EFe   –  EFh  ≈  e · U

(The "about equal" contains roughly the same approximation as the "average barrier height" from the simple
derivation!)

This gives us the final result

UDL (max)  ≈ 
1

2τ
  · ni · exp –

e · U

2kT

Again , this is the net recombination rate at any point in the space charge region. To obtain the current density, we
have to multiply with the width d of the SCR (and the elementary charge) and obtain for the maximum current from the
SCR in forward direction:

jF(SRC)  = 
e · ni · dSCR

2τ 

  · exp –
e · U

2kT

Considering that we needed the whole formalism of Shockley-Read-Hall recombination theory, Quasi-Fermi energies,
some junction theory, and lots of assumptions and approximations to get the same result as before, this does not
appear to be a much better way of getting an idea about the influence of the SCR on the diode characteristic than the
"quick and dirty" way.

But don't deceive yourself! The treatment given here is not only physically sound, but transparent at every step. If
you want to do more precise calculations, you would know - at least in principle - what to do.
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Depletion

This is the case where an electrical field of arbitrary origin repulses the majority carriers and a space charge region
develops.

Starting with the Poisson equation for doped semiconductors and all dopants ionized, we have

d2(∆EC)

dx2
 =  –  

e2 · N

εε 0





1  – exp – 
∆EC

kT





In contrast to the case of quasi-neutrality , we now have +∆EC >> kT and the sign is important!

This leads to a simple approximation:

exp –
∆ EC

kT
  ≈ 0

The Poisson equation for the part of the semiconductor that contains this carrier density reduces to

d2(∆EC)

dx2
 =  –  

e2 · ND

εε 0

We have treated this case already in the more basic considerations. The result was

U(x)  = 
e · ND

2εε 0
 · x2 –  2dSCR · x + dSCR2

dSCR  = 
 1 

e
 · 





2∆EC(x = 0) · εε0

ND





1/2

With ∆ EC(x = 0) = ∆E for brevity, we can rewrite the expression for the width of the space charge layer in terms
of the Debye length LDb

LDb  = 




ε ε 0 · kT)

e2 · ND





1/2

and obtain

dSCR  = LDb · 




2∆E

kT





1/2

If we express ∆E in terms of the the voltage U between the ends of the sample by e · U = ∆E, we have the final
result
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dSCR  = LDb · 




2 · e · U

kT





1/2

Remember that LDb is a purely material related quality and thus a constant for a given semiconductor. The width of
the space charge region can be expressed very simply in terms of LDb , it is always larger by the factor {2eU/kT}1/2

Since kT at room temperature ≈ 1/40 eV, while applied voltages may be up to 1000 V, dSCR may exceed LDn by
several orders of magnitude. This is shown in the illustration below (the numbers are basically correct, but not in
detail).
The breakdown limit indicates that the SCR, being an dielectric insulator, will eventually experience electrical
breakdown if the field strength exceeds an upper limit.
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Inversion

Inversion is the working horse of all MOS devices. Its treatment is not only rather involved, but requires for realistic
cases an inclusion of the "oxide" properties, i.e. the properties of the insulting layer needed to avoid current flow.

It is simply not particularly useful to discuss the case of an fictive insulating layer with infinitesimal thickness as
before. It is necessary, to include properties of this layer, like its fixed or mobile volume charge density, and
interface charge densities.
You might wonder why there should be charge in the insulating layer; after all, macroscopic objects normall do
not carry net charge. The gate oxide of a transistor, however, is not a macroscopic object, and it does not take a
lot of charge to influence the junction properties a lot. In fact, some devices (EPROMs, to be precise), completely
depend on charge trapped in the oxide.

MOS devices and inversion thus have a vocabulary of their own which exceeds the scope of this course considerably.

We will therefore not treat the inversion case in detail but only discuss qualitatively what happens.

Let's look at band diagrams for polarities where the majority carriers are repulsed by the surface charge

We compare an MOS contact, where large voltages can be used without current flow, and thus band bending
may occur for a constant Fermi energy (right), with a reversely biased pn-juction (left), where we also may apply
large voltages but with a non-constant Fermi energy.

pn-junction MOS contact

In the reversely biased pn-junction a large space charge region develops, totally devoid of carriers as indicated by
the Quasi-Fermi energies.
For the MOS contact, the situation for small voltages is similar to the pn-junction, but for larger voltages a new
situation occurs:

The Fermi energy will be in mid-band position for some voltage, increasing the voltage somewhat will now lead to
inversion, i.e, holes are now the majority carriers in a surface-near layer. The following distinctions are customary

Weak inversion begins when the Fermi energy at the surface in in the middle of the band gap. In this case, the
hole concentration at the surface is identical to the electron concentration and equal ni. If the voltage is
increased, the hole concentration will now be larger than the electron concentration
Strong inversion commences as soon as the Fermi energy is equal to the level of the donor atoms in our
example, i.e. is practically at the valence band edge. The concentration of holes will now be larger than the
concentration of electrons in the bulk of the material and increase even further if the voltage is increased.
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Accumulation

This is the case where an electrical field of arbitrary origin attracts the majority carriers .

Starting with the Poisson equation for doped semiconductors and all dopants ionized, we have seen that we can
approximate the situation by

d2∆EC

dx2
 =  –  e2 · NDεε0 ·





1   –  exp –
∆EC

kT





In contrast to the case of quasi-neutrality, we now have (and the sign is important)

– ∆EC  > kT

This allows the approximation

1  –  exp –
∆EC

kT
 ≈  – exp –

∆EC

kT

and the Poisson equation reduces to

d2∆E C

dx2
 =  – 

e2 · ND

εε0

· exp –
∆EC

kT

Using the Debye length LD= {(εε0 kT )/(e2ND)}1/2, or ND = εε0kT/e2L 2 D ,
the Poisson equation for accumulation can be rewritten as

d2∆EC

dx2
 =  – 

kT   

L2D

 · exp –
∆ EC

kT

While this looks like a simple differential equation, it is not all that easy to solve it.

What we would need first, are defined boundary conditions so we can tackle the differential equation. There are no
obvious candidates, so we have to think a little harder now.

Accumulation means that we have some surface charge ρ that we put on the surface of the semiconductor (with
our fictive thin insulating layer in between).
We thus need to refomulate the differential equation so that surface charge can be included. the (not overly
obvious) way to do this is to introduce the electrical field strength E( x) as a new variable besides ∆EC.
For that we use the relation

d2∆EC

dx2
 = 

d

dx





d∆E C

dx





 = 
d

dx
[e · E( x)]  =  e ·

dE( x)

d∆E C
 ·  

d ∆EC

dx
 =  e2 · E(x) ·  

dE(x)

d∆EC

We also made use of the equaltity d∆E C/d x = e · E(x ) with E(x) = field strength.

Inserting and separating the variables (and omitting the "( x)" for clarity) gives

e2 · E · dE  = 
kT

L2 D
 · exp –

∆EC

kT
  · d∆EC
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Tricky, but worth it. Now we can integrate both sides. The integrations run from far inside the bulk , i.e. from E =
0, to some value of E, and that means from d∆EC = 0 to some corresponding value d∆EC.

Omitting the integration (which is trivial), we obtain

E2

2
 = 





kT

e · LD





2
  ·  





exp –
∆ EC

kT
  –   1





i.e. an equation relating the amount of band bending at some position x to the electrical field strenght at this
point, which is

E(x)  =  ±  
kT

e · LD





2exp –
∆EC (x)

kT
  –   1





1/2

For n-type semiconductors, which we are considering, ∆EC is negative and large (i.e. ∆ EC >> kT) - and we may
neglect the – 1, obtaining

E(x)  ≈   ±  
kT

e · LD

 ·  




2exp –
∆EC(x)

kT





1/2

While this is fine, we still don't have the solution we want. We must now remember that there is a simple relation
tying surface charge to volume charge.

This is Gauss law, stating that the flux of the electrical field through a surface S is the integral over the
components of E perpendicular to the surface.
The charge is usually expressed in terms of charge density ρ(x,y,z). Gauss law then states:

⌠
⌡
⌠
⌡   E · n · da  = 

1 

ε ε
 · ⌠⌡

⌠
⌡
⌠
⌡  ρ(x,y,z) · dV

S  V

With n = normal vector of the surface S, da = surface increment, dV = volume increment. For more details use
the link.

For our case it means that we could replace the total charge ρ contained in a slice between x = ∞ (where there is no
charge and the field strength is E = E bulk = 0) and x, by a surface (or better areal) charge σ area(x) at x given by

σarea(x)   = εε0 · (E(x)  –  E bulk) =  εε0 · E( x)

σarea(x)  =  ±  
εε · kT

e · LD

 ·  




2exp –
∆EC (x)

kT





1/2

The total amount of band-bending induced by a real external surface charge σex is simply ∆E C(x = 0) which we call
∆EC0 :

∆EC0  =  ±  2kT · ln  
σex · e · LD

21/2 · εε0 · kT

So we have all we need. The +/- sign came from the two solutions of the square root; we have to pick the correct
one depending on the situation (holes or electrons considered).
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Band-Bending and Surface Charge

While our basic experiment of putting some surface charge on a semiconductor surface that is insulated by a (fictive)
very thin featureless insulator is simple, the necessary solutions of the Poisson equation were not.

Special cases, centered around some basic assumptions and concommitant mathematical approximations, had
to be constructed and were treated separately:

Quasi-neutrality
Depletion
Inversion
Accumulation

and most of them proved to be rather tedious.
Fortunately, given the tremendous importance of these cases for semiconductor technology, other people have
looked at this problem in great detail, and here we are just looking at some major results for the general case.

Here we put everything together again. The essential picture shows the maximum amount of band bending (i.e. at x =
0 where we have our external surface charge) as a function of the surface charge (always proprotional to the external
voltage).

The curve obtained from a proper solution of the complete Poisson equation must contain as parameters the
doping concentration and the temperature - the Debye length in other words.
Here is one version, calculated for p-type Si with an acceptor concentration of 1015 cm–3 (i.e. a typical doping
concentration corresponding to a resistivity of about 1 Ωcm.
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A vague discomfort at the thought of the chemical potential
is still characteristic of a physics education.
This intellectual gap is due to the obscurity
of the writings of J. Willard Gibbs who
discovered and understood the matter 100 years ago.

C. Kittel; Preface to his book: Introduction to Solid State Physics

The Chemical Potential

 
This module is registered in the "basic" part of the Semiconductor course, beause the chemical potential belongs to
basic thermodynamics. However, people with a mostly physics background (like me) may often have learned exciting
things like Bose-Einstein condensations and the Liouville theorem in their thermodynamics courses, but not overly
much about chemical potentials and, most importantly, chemical equilibrium .
If you want to refresh your memory, the following link will take you to the hyperscript "Defects in Crystals" which
contains a detailed discussion of the chemical potential in its "Advanced" part.
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Reciprocal Lattice

Geometric Definition

The reciprocal lattice is fundamental for all diffraction effects and other processes in a crystal lattice where
momentum is transferred.
The reciprocal lattice of any geometrical point lattice has a simple geometric definition:

It can be constructed by drawing the direct lattice, picking three sets of lattice planes (hi, ki, li) (i=1,2,3) that are
not coplanar, and by constructing three vectors gh,k,l which are perpendicular to the respective lattice planes and
with a length (measured in cm–1 ) that is given by |g|=2π/dh,k,l, with dh,k,l=distance between the lattice planes
(h,k,l).
The three vectors thus obtained, if reduced to the three shortest ones possible (take three lattice planes with
largest distance, i.e. lowest values of (h,k,l)) define the reciprocal lattice.

This is, of course, just a complicated way of saying:

Take the (100), (010), and the (001) planes, and use the vectors perpendicular to those planes with a length given
by 2π/d for these {100} type planes as the base vectors of the reciprocal lattice.
 

The Reciprocal Lattice as Fourier Transform of the Regular Lattice

The reciprocal lattice, however, is best looked at as the Fourier transform of the regular lattice. We are showing this
by constructing the Fourier transform of a real crystal.

It is easier to look at a real crystal (not just a lattice) because otherwise you have to work with δ-functions.

A real crystal has atoms. And atoms contain charge densities ρ (r), or, if we start simple and one-dimensional, ρ
(x).
Now, ρ( x) must be periodic in x-direction with the lattice constant a:

ρ(x + na)  = ρ(x),  n=0 ±1, ±2, ...

We thus can expand ρ (x) into a Fourier series, i.e.

ρ(x)  = Σ
n

ρn · exp
i · x· n· 2π

a

The three-dimensional case, in analogy, can be written as

ρ(r)  = Σ
G

ρG· exp (i · G · r)

The vector G so far is just a mathematical construct defining the "inverse" space needed for the Fourier transform.

However, since we can always substitute for any r a vector r + T ( T= translation vector of the lattice), or written
out, r + n1 a1 + n2a2 + n3 a3 with ni= integers and ai= base vectors of the lattice defining the crystal, the product
r · G must not change its value if we substitute r with r + n1a1 + n2a 2 + n3a3.
This requires that G · T=2π · m with m= integer.

This is essentially a definition of the vectors G that serve as the Fourier transforms of the vector T, i.e. the lattice in
space. These reciprocal lattice vectors, as they are called, can be obtained from the base vectors defining the regular
lattice in the following way:

If we write G in components we obtain

G  = h · g1+ k · g2 + l · g3

With h, k, l= integers.
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The vectors g1, g2, and g 3 are then the unit vectors of the reciprocal lattice. (yes – they are underlined, you
just don't see it with some fonts!)

If we now form the inner product of G · T, e.g., for simplicity, with T= n1 · a1, we obtain

(h · g 1+ k· g2 + l · g3 ) · (n1· a1)  = 2π· m

For an arbitrary n1 this only holds if

g1 · a1  = 2π   
     

g2· a1  = g3· a1   =  0

In general terms, we have

gi· a j  = 2 π· δij

With δij = Kronecker symbol, defined by: δ ij=0 for ≠ and δij =1 for i=j.

The above equation is satisfied with the following definitions for the unit vectors of the reciprocal lattice:

g1  = 2 π·
a2 × a3

a1· a2· a3
    

g2  = 2 π·
a3 × a1

a 1 · a 2· a3
    

g3  = 2 π·
a1 × a2

a1 · a2· a3
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Ohm's Law and Materials Properties

For this basic module we simply take the suitable module of the Hyperscript "Introduction to
Materials Science II" since it is the newest and updated version.

The module as it existed in Sept. '01 is reprocuced below.

Ohm's Law and Material Properties

 
In this subchapter we will give an outline of how to progress from the simple version of Ohm's "Law", which is a kind
of "electrical" definition for a black box, to a formulation of the same law from a materials point of view employing
(almost) first principles.

In other words: The electrical engineering point of view is: If a "black box" exhibits a linear relation between the
(dc) current I flowing through it and the voltage U applied to it, it is an ohmic resistor.
In contrast, the (extreme) Materials Science point of view is: Tell me what kind of material is in the black box, and
I tell you:

If it is an ohmic resistor, i.e. if the current relates linearly to the voltage for reasonable voltages and both
polarities; and

1.

What its (specific) resistance will be, including its temperature dependence.2.
And everything else of interest.3.

Let's see what we have to do for this approach.

 

1. Step: Move to specific quantities

 
First we switch from current I and voltage U to the current density j and the field strength E , which are not only
independent of the (uninteresting) size and shape of the body, but, since they are vectors, carry much more
information about the system.

This is easily seen in the schematic drawing below.

 
Current density j and field strength E may depend on the
coordinates, because U and I depend on the coordinates, e.g. in
the way schematically shown in the picture to the left. However,
for a homogeneous material with constant cross section, we
may write
 

j  = 
I

F

 
with F= cross sectional area. The direction of the vector j would
be parallel to the normal vector f of the reference area
considered, so in full splendor we must write
 

j =
I

F
· f
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The field strength is

E = 
U

d

Here, d= distance between the points at which U is measured. If we want E as a vector, we have, in principle, to
calculate the gradient of the potential V:

E = – ∇V

For the homogeneous case E is parallel to f again which is clear without calculation.

We now write down Ohm's law with the new quantities and obtain

j · F =  I =
1

R
· U  = 

1

R
· (E · d)

j  = 
d

F· R
 · E

The fraction d / (F · R) obviously (think about it!) has the same numerical value for any homogeneous cube (or ....) of
a given material; it is, of course, the specific conductance or, for short, the conductivity σ:

σ  = 
1

ρ
 = 

d

F · R

and ρ is the specific resistance or, for short, the resistivity.

Of course, we will never mix up the resistivity ρ with the charge density ρ or general densities ρ, because we
know from the context what is meant!
The resistivity obtained in this way is of course identical to what you would define as specific resistance by
looking at some rectangular body with cross-sectional area F and length d.
Being specifc quantities, conductivity has the dimension [σ ]=Ω–1 cm–1, and the dimension of resistivity is
[ρ]=Ωcm. The latter is more prominent and you should at least have a feeling for representative numbers by
remembering this:

ρ (metal)  ≈ 2 µΩcm
   

ρ (semicoductor)  ≈ 1 Ωcm
   

ρ (insulator)  ≈ 1 GΩcm

Restricting ourselves to isotropic and homogenoeus materials restricts σ and ρ to being scalars with the same
numerical value everywhere, and Ohm's law now can be formulated for any material with weird shapes; we "simply"
have

j  = σ  · E

Ohm's law in this vector form , however, is now valid at any point of a body, since we do not have to make
assumptions about the shape of the body.
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Take an arbitrarily shaped body with current flowing through it, cut out a little cube (with your "mathematical"
knife) at the coordinates (x,y,z) without changing the flow of current, and you must find that the local current
density and the local field strength obey equation given above locally.

j(x,y,z)  = σ  · E(x,y,z)

This is a much more powerful version of Ohm's law! Especially, because we now harbor a suspicion: There is no good
reason why j must always be parallel to E. This means that for the most general case, conductivity is not a scalar
quantity but a tensor; σ= σij.
(There is no good way to write tensors in HTML; we use the ij index to indicate tensor properties.

Ohm's law then writes

jx=σxx· Ex+ σ xy· Ey + σxz · Ez
jy=σyx · Ex + σyy· Ey+ σyz· Ez
jz=σzx· Ex + σ zy· Ey+ σzz · Ez

For anisotropic inhomogeneous materials you have to take the tensor, and its components will all depend on the
coordinates – that is the most general version of Ohm's law.

Note that this is not so general as to be meaningless: We still have the basic property of Ohm's law: The local
current density is directly proprotional to the local field strength (and not, for example, to exp(– const. · E).

Our goal now is to find a relation that makes possible to calculate σij for a given material (or material composite); i.e.
we are looking for

σ ij=σij (material, temperature, pressure, defects... )

 

2. Step: Describe σ ij in Terms of the Carrier Properties

 
Electrical current needs mobile charged carriers. We therefore want to express σij in terms of the properties of the
carriers present in the material under investigation.

To do this, we will look at an electrical current as a "mechanical" stream or current of (charged) particles and
compare the result we get with Ohm's law.

First, lets define an electrical current in a wire in terms of the carriers flowing through that wire. There are three crucial
points to consider
1. The external electrical current as measured in an Ampèremeter is the result of the net current flow through any
cross section of an (uniform) wire.

In other words, the measured current is proportional to the difference of the number of carriers of the same charge
sign moving from the left to right through a given cross sectional area minusthe number of carriers moving from
the right to the left.
In short: the net current is the difference of two partial currents flowing in opposite directions:

We will encounter cases where we have to sum up 8 partial currents to arrive at the externally flowing current, so
keep this in mind!

2. In summing up the individual current contributions, make sure the signs are correct. The rule is simple:

The electrical current is (for historic reasons) defined as flowing from + to –. For a particle current this means:
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In words: A technical current I flowing from + to – may be obtained by negatively charged carriers flowing in the
opposite direction (from – to +), by positively charged carriers flowing in the same direction, or from both kinds of
carriers flowing at the same time in the proper directions.
The particle currents of differently charged particles then must be added! Conversely, if negatively charged
carriers flow in the same directions as positively charged carriers, the value of the partial current flowing in the
"wrong" direction must be subtracted to obtain the external current.

3. The flow of particles through a reference surface as symbolized by one of arrows above, say the arrow in the +x -
direction, must be seen as an average over the x -component of the velocity of the individual particles in the wire.
Instead of one arrow, we must consider as many arrows as there are particles and take their average. A more detailed
picture of a wire thus looks like this

If we want to obtain the net flow of particlesthrough the wire (which is obviously proportional to the net current
flow), we could take the average of the velocity components <vx > pointing in the +x direction (to the right) on the
left hand side, and subtract from this the average <v–x > of the velocity components pointing in the –x direction
(to the left) on the right hand side.
We call this difference the drift velocityof the ensemble of carriers. If there is no driving force, e.g. an electrical
field, the velocity vectors are randomly distributed and <vx > =<v-x> ; the net current is zero as it should be.

Average properties of ensembles can be a bit tricky. Lets look at some properties by considering the analogy of a
localized swarm of summer flies "circling" around like crazy, so that the ensemble looks like a small cloud of
smoke. A more detailed treatment can be found in the advanced section.

First we notice that while the individual fly moves around quite fast, its vector velocity vi averaged over time t, <vi
>t, must be zero as long as the swarm as an ensemble doesn't move.
In other words, the flies, on average, move just as often to the left as to the right, etc. The net current produced
by all flies at any given instance or by one individual fly after sufficient time is obviously zero for any reference
surface.

In real life, however, the fly swarm "cloud" often moves slowly around – it has a finite drift velocity which must be just
the difference between the average movement in drift direction minus the average movement in the opposite direction.

The drift velocity thus can be identified as the proper average that gives the net current through a reference plane
perpendicular to the direction of the drift velocity.
This drift velocity is usually much smaller than the average magnitude of the velocity <v> of the individual flies. Its
value is the difference of two large numbers – the average velocity of the individual flies in the drift direction minus
the average velocity of theindividual flies in the direction opposite to the drift direction.

Since we are only interested in the drift velocity of the ensemble of flies (or in our case, carriers) we may now simplify
our picture as follows:
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We now equate the current density with the particle flux density by the basic law of current flow:

Current density j=number N of particles carrying the charge q flowing through the cross sectional area F (with the
normal vector f and |f|=1) during the time interval t, or

j = 
q· N

F · t
 · f

In scalar notation, because the direction of the current flow is clear, we have

 

j = 
q · N

F· t

With n=N / V= density of carriers in a volume V, and V=F · d with d being the required certain length of the wire
needed to obtain V, we now must consider how many carriers contained in the volume V will flow through the
reference plane F.
The trick is to take

d = vD · t

This makes sure that all carriers contained in this length will have reached F after the time t has passed, and
thus all carriers contained in the volume V=F· vD · t will contribute to the current density. We can write the
current equation as follows:

j  = 
q · N

F · t
 = 

q · n · V

F · t
 = 

q · n · F · d

F · t
 = 

q · n · F · vD · t

F · t

This was shown in excessive detail because now we have the fundamtental law of electrical conductivity (in obvious
vector form)

j  = q · n · vD

This is a very general equation relating a particle current (density) via its drift velocity to an electrical current (density)
via the charge q carried by the particles.

Note that it does not matter at all why an ensemble of charged particles moves on average. You do not need an
electrical field as driving force anymore. If a concentration gradient induces a particle flow via diffusion, you have
an electrical current, too, if the particles are charged.
Of course, if you have different particles, with different density, drift velocity, and charge, you simply sum up the
individual current contributions (following the sign convention as pointed out above).

All we have to do now is to compare this equation to Ohm's law:

j  = q · n · vD  =  σ · E

We then obtain

σ  := 
q · n · vD

E
 = constant

This implies by necessity
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vD

E
 = constant

A simple, but far reaching equation!

What it means is that if vD/E= const. holds for any (reasonable) field E, the material will show ohmic behavior.
We have a first condition for ohmic behavior expressed in terms of material properties.
If, however, vD/E is constant (in time) for a given field, but with a value that depends on E, we have σ=σ(E); the
behavior will not be ohmic!

The requirement vD/E=const. for any electrical field requires a constant average velocity in field direction for the
particle which is directly proportional to E. This leads to a simple conclusion:

Since a constant electrical field exerts a constant force on a charged particle, without some kind of friction its
velocity would grow to infinity. We thus conclude that there must exist some mechanism that acts like a frictional
force on all accelerated particles, and that this frictional force in the case of ohmic behavior must be in a form
where the average drift velocity obtained is proportional to the driving force.

Since vD/E=constant must hold for all ohmic materials under investigation, we may give it a name:

It is called the mobility μ of the carriers, with the unit
[ μ]=(m/s)/(V/m)=m2/V · s.
The mobility μ (Deutsch: Beweglichkeit ) then is a material constant ; it is determined by the "friction", i.e. the
processes that determine the average velocity for carriers in different materials subjected to the same force q · E.
Thinking ahead a little bit, we realize that μ is a material constant even in the absence of electrical fields – it
simply expresses how fast carriers give up surplus energy to the lattice; and it does not matter how the got the
surplus energy. It is therefore no suprise if μ pops up in all kinds of relations, e.g. in the famous
Einstein–Smoluchowski equation linking diffusion coefficients and mobility of particles.

We now can write down the most general form of Ohm's law applying to all materials meeting the two requirements:
n=const. and μ =const. everywhere. It is expressed completely in particle (=material) properties:

σ  = q · n · μ

Sinc we like to have σ as a positive number, we always take only the magnitude of the charge q carried by a particle.

However, if we keep the sign, e.g. write σ=–e · n · μe for electrons carrying the charge q=–e (e= elementary
charge), we now have an indication if the particle current and the electrical current have the same direction (σ > 0)
or opposite directions σ < 0) as in the case of electrons.
But it is entirely a matter of taste if you like to schlepp along the signs all the time, or if you like to fill 'em in at
the end.

Everything more detailed then this is no longer universal but specific for certain materials. The remaining task is to
calculate n and μ for given materials (or groups of materials).

This is not too difficult for simple materials like metals, where we know that there is one (or a few) free electrons
per atom in the sample – so we know n to a sufficient approximation. Only μ needs to be determined.
This is fairly easily done with classical physics; the results, however, are flawed beyond repair: They just do not
match the observations and the unavoidable conclusion is that classical physics must not be applied when
looking at the behavior of electrons in simple metal crystals or in any other structure – we will show this in the
immediately following section 2.1.3.

We obviously need to resort to quantum theory and solve the Schrödinger equation for the problem.

This, surprisingly, is also fairly easy in a simple approximation. The math is not too complicated; the really
difficult part is to figure out what the (mathematical) solutions actually mean. This will occupy us for quite some
time.
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Ohm's Law and Classical Physics

For this basic module we simply take the suitable module of the Hyperscript "Introduction to
Materials Science II" since it is the newest and updated version.

The module as it existed in Sept. '01 is reprocuced below.

Ohm's Law and Classical Physics

In this subchapter we will look at the classical treatment of the movement of electrons in an electrical field. It is a
direct continuation of subchapter 1.1.3 in backbone II (of the hyperscript "Introduction to Materials Science II") and
again more closely matched to the actual lecture.

In this preceding subchapter we obtained the most basic formulation of Ohms law in material terms.
σ=q·n·μ
For a homogeneous and isotropic material (e.g. polycrystalline metals or single crystal of cubic semiconductors),
the concentration of carriers n and their mobility μ do not depend on the coordinates - they have the same value
everywhere in the material and the specific conductivity σ is a scalar.
In general terms, we may have more than one kind of carriers (this is the common situation in semiconductors)
and n and μ could still be more or less complicated functions of the temperature T, the local field strength Eloc
resulting from an applied external voltage, the detailed structure of the material (e.g. the defects in the lattice),
and so on.
We will see that these complications are the essence of advanced electronic materials, especially the
semiconductors, but in order to make life easy, we now will restrict ourselves to the special class of ohmic
materials. We have seen before that this requires n and μ to be independent of the local field strength. We still
may have a temperature dependence of σ ; even commercial ohmic resistors, after all, do show a more or less
pronounced temperature dependence which increases roughly linearly with T.

In short, we are treating metals, characterized by a constant density of one kind of carriers (=electrons) in the order of
1 ...3 electrons per atom in the metal.

Basic Equations and the Nature of the "Frictional Force"

We consider the electrons in the metal to be "free", i.e. they can move unhindered in any direction.

The electrical field E then exerts a force F=-e· E on any given electron and thus accelerates the electrons in the
field direction (more precisely, opposite to the field direction because the field vector points from + to - whereas
the electron moves from - to +).
In the fly swarm analogy, the electrical field would correspond to a steady airflow - some wind - that moves the
swarm about with constant drift velocity.
Basic mechanics yields for a single particle with momentum p
F=dp/dt =m·dv/dt with p=momentum of the electron.
Note that p does not have to be zero when the field is switched on.

If this would be all, the velocity of a given electron would acquire an ever increasing component in field direction and
eventually approach infinity. This is obviously not possible, so we have to bring in a mechanism that destroys an
unlimited increase in v

In classical mechanics this is done by introducing a frictional force Ffr=kfr·v with kfr being some friction
constant. But this, while mathematically sufficient, is devoid of any physical meaning with regard to the moving
electrons. So we have to look for another approach.
The best way to thing about it, is to assume that the electron, flying along with increasing velocity, will hit
something else in its way every now and then, which will change its momentum (and thus the magnitude and the
direction of v) as well as its kinetic energy 1/2·m·v 2.

In other words, we consider collisions with other particles where the total energy and momentum of the particles is
preserved, but the individual particles loses its "memory" of its velocity before the collision and starts with a new
momentum after every collision.
What are the "partners" for collisions of an electron, or put in standard language, what are the scattering
mechanisms? There are several possibilities:

Other electrons . While this happens, it is not the important process in most cases.

Defects, e.g. foreign atoms, point defects or dislocations. This is a more important scattering mechanism and
moreover a mechanism where the electron can transfer its surplus energy (obtained through acceleration in the
electrical field) to the lattice which means that the material heats up
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Phonons, i.e. "localized" lattice vibrations traveling through the crystal. In a quantum mechanical treatment of
lattice vibrations it can be shown that these vibrations, which contain the thermal energy of the crystal, show
typical properties of (quantum) particles: They have a momentum and an energy given by h·ν (h =Plancks
constant, ν=frequency of the vibration), and treating the interaction of an electron with a lattice vibration as a
collision with a phonon gives correct results. This is the most important scattering mechanism.

It would be far from the truth to assume that only accelerated electrons scatter; scattering happens all the time. If
electrons are accelerated in an electrical field and thus gain energy, scattering is the way to transfer this surplus
energy to the lattice which then will heat up. Generally, scattering is the mechanism to achieve thermal equilibrium
and equidistribution of the energy of the crystal.

Lets look at some figures illustrating the scattering processes.

 
Shown here is the magnitude of the velocity of an electron in x and -x
direction without an external field. The electron moves with constant velocity
until it is scattered, then it continues with a new velocity.
The scattering processes, though unpredictable as single events, must lead
to the average <v> characteristic for the material and its conditions.
Whereas <v>=0, <v> has a finite value and <vx>=- <v-x>. This is a bit tricky
since the way we are writing formulas here we cannot easily distinguish
between vectors and scalars: Here, to emphasize the point, v is a vector,
and v is a scalar (its magnitude).

From classical thermodynamics we know that the electron gas in thermal equilibrium with the environment
possesses the energy Ekin=(1/2)kT per particle and degree of freedom with k=Boltzmann's constant and
T=absolute temperature.
We write energies E in magenta to avoid confuison with electrical fields E.

The three degrees of freedom are the velocities in x-, y- and z-direction, so we must have
Ekin,x=1/2m<vx> 2=1/2 kT or
<vx>=(kT/m)1/2.
Similarly, for the total energy
Ekin=1/2m<vx> 2 + 1/2m<vy>2 + 1/2m<vz>2=1/2m<v> 2=1/2mv02,
we have
E kin=1/2m<v>2=1/2mv02=3/2 kT
with v0=<v>.
Now lets turm on an electrical field E. It will accelerate the electrons between collisions; their velocity increases
linearly.
In our diagram from above this looks like this:

 
Here we have an electrical field in x-direction. Between collisions, the
electron gains velocity in +x-direction at a constant rate.

The average velocity in +x directions, <v+x>, is now larger than in -x
direction, <v-x>. For real electrons, however, the difference is very small; the
drawing is very exaggerated.

  
The drift velocity is contained in the difference <v+x> - <v-x>; it is completely described by the velocity gain
between collisions. We may thus symbolically neglect the velocity right after a collision because it averages to
zero anyway, and just plot the velocity gain in a simplified picture; always starting from zero after a collision.
 

The picture now looks quite simple; but remember that it contains some not
so simple averaging.

At this point it is worthwhile to point out that we can define a new average:
The mean time between collisions, or more conventional, the mean time τ for
reaching the drift velocity vD in the simplified diagram.

 
This is most easily seen by simplifying the scattering diagram once more: We simply use just one time - the
average - for the time that elapses between scattering events and obtain.
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This is the standard diagram illustrating the scattering of electrons in a
crystal usually found in text books; the definition of the scattering time τ is
included

  
While this diagram is not wrong, it is a highly abstract rendering of the underlying processes after several averaging
procedures. From this diagram only, no conclusion whatsoever can be drawn as to the average velocities of the
electrons without the electrical field!

With the scattering concept, we now can introduce two new (related) material parameters:

The mean (scattering) time τ between two collisions as defined before, and a directly related quantity:

The mean free path L between collisions; i.e. the distance travelled by an electron (on average) before it collides
with something else and changes its momentum. We have
L=2τ·(v 0 + vD).
Note that v0 enters the equation!

Using τ as a new parameter, we can rewrite the mechanics equations:

dv/dt can be written as ∆v/∆t=vD /τ
because the velocity change during the time τ is just vD. From this we obtain
vD/τ=-E·e/m , or
vD=-(E·e·τ)/m.

Inserting this equation for vD in the old definition of the current density , j=-n·e·vD yields

j=-E·( n·e2τ )/m :=σ·E ,
and thus
σ=(n·e2τ )/m

This is the classical formula for the conductivity of a classical "electron gas" material; i.e. metals. We do not yet
know τclass, but we may turm the equation around and use it to calculate the order of magnitude of τ class , since we
know the order of magnitude for the conductivity of metals. The result is:

τclass=ca. (10-13 .... 10-15) sec

"Obviously" (as stated in many text books), this is a value that is far too small and thus the classical approach
must be wrong. But is it really too small? How can you tell without knowing a lot more about electrons in metals?
Well, you can't. So let's look at the mean free path L instead.

We have
τ =L/(2(v0 + vD)) or L=2τ(v 0 + vD) and
v02=(3kT/m) 1/2

.
This gives us a value v0=ca. 105 m/s at room temperature! Now we need vD, and this we can estimate from the
equation vD/ τ=-E·e/m given above:
vD =- E·τ·e/m=ca. 1 mm/sec
if we use the value for τ dictated by the measured conductivities. It is much smaller than v0!
The mean free path between collisions thus is
L=2τ (v0 + vD)=ca. 2 τv0=ca. (101..10-1)nm
and this is certainly too small!.

Why is a mean free path in the order of the size of an atom too small? Well, think about the scattering mechanisms.
The distance between defects is certainly much larger, and a phonon itself is "larger", too. Moreover, consider what
happens at temperatures below room temperatures: L would become even smaller - somehow this makes no sense.
It does not pay to spend more time on this. Whichever way you look at it, whatever tricky devices you introduce to
make the approximations better (and physicists have tried very hard!), you will not be able to solve the problem: The
mean free paths are never even coming close to what they need to be and the conclusion - maybe reluctant but
unavoidable - must be:
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There is no way to describe
conductivity (in metals)
with classical physics.
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Phase and Group Velocity

The velocity v of the electron in the free electron gas model is the velocity with which the phase of the wave moves, it
is called phase velocity vP.

As long as a single plane wave symbolizes all that is to a particle, the phase velocity is automatically also the
particle velocity v.

This is no longer true, however, for particles that are described as a superposition of (plane or other) waves with all
kinds of wave vectors - and that means most real particles.

While each individual wave of the set that now describes the particle still travels with its individual phase velocity
viP, the maximum of the total amplitude of all waves - signifying the most likely place to find the particle - travels
with a velocity that must be identified with the particle velocity v and that is called group velocity.
That the group velocity may be totally different from the phase velocity is nicely demonstrated by the example of
standing waves, obtained by just combining two plane waves with wave vectors k and – k . These waves have the
same magnitude of the phase velocity, just opposite signs.

The result is a standing wave with maxima and minima that are fixed in space; we have group velocity vG = 0. We
may not really know where the particle is (locating it makes no sense under these coditions) but it certainly isn't
going anywhere!
The group velocity for a particle still characterized by one wave vector k as. e.g. in a Bloch wave, is calculated by the
simple formula

vG  = 
1

  ·  
dE(k)

dk

i.e. it follows directly from the dispersion relation E = E(k).

This distinction is essential to avoid confusion between the over-simplified quantum mechanical picture of the free
electron gas, and the treatment of electrons (and holes) as particles later on.

While the electron in the free electron gas would move through the lattice with a rather large velocity because
group and phase velocity are identical, the "real" electrons are rather sluggish.
This is of course a direct consequence of the fact that only electrons and holes near the band edges are
important where the group velocities are low because E(k) ≈ constant.
In other words: The electrons we are concerned with resemble much more standing waves than fast moving plane
waves. Or, in yet other words: They spent a lot of time hanging around the atoms before they move on to some
other atom.
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Thermodynamics Primer

Internal Energy, Enthalpy, Entropy , Free Enthalpy, and Free Energy

 
Use the link and you will end up on the Thermodynamics module of the "Defects in Crystals" Hyperscript.
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Potentials

The link brings you to a suitable module of the Hyperscript "Defects in Crystals".
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Density of States

Derivation of D(E ) for the three-dimensional free electron gas

We start from the number of states inside a sphere with radius k in phase space.

The volume V of the sphere is V = (4/3) · π · k3; the volume V k of one unit cell (containing two states: spin up
and spin down) is

Vk  = 




2π

L





3

This gives the total number of states, Ns, to be

Ns  =  2 ·
V 

Vk

 = 2 · 
4 · π · k3 · L3

3 · 8 ·π3
 = 

k3 · L3

3π2

For reasons that will become clear very soon, we will keep track of the dimension of what we get. The wave vector
k has a dimension of [k] = m–1; Ns thus is a dimensionless quantity - as it should be.

The density of states D is primarily a density on the energy scale, and only secondarily a density in space. The
definition was

D  = 
1 

V
·

dNs

dE
 = 

1 

L3
·

dNs

dE 

We thus must express the wave vector in terms of energy which we can do using the appopriate dispersion relation.
For the free electron gas model we have

E  =  
(  · k)2

2m

k  =  ± 




2 · E · m

2





1/2

Insertion in the formula for Ns yields

Ns  =  
L3

3π2
 ·  





2 E · m

2





3/2
  = 

L3

3π 2
·

(2m)3/2

3
 · E 3/2

Dividing by L3 and differentiating with respect to E gives the density of states D

D  =  
1

L3
  · 

dNs

dE 

 =  
1 

2π2
 · 





2m

2





3/2
 · E 1/2

The dimension now is somewhat odd, we have (with Plancks constant  = h/2π = 6.5820 · 10–19 eV·s)
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[D]  = kg3/2 · eV1/2 · eV–3 · s– 3  = kg3/2 · eV– 5/2 · s– 3

while we would need [D] = m–3 · eV–1 .

If we want to calculate numbers, we have to find the proper conversion. The problem came from the dispersion relation
which gave the dimension of the energy as

[E] = eV2 · s2 · m–2 · kg–1 ; which tells us that eV · s2 · m–2 · kg–1 = 1 must hold.

This is indeed the case, of course, because the basic unit of energy, the Joule, is defined as
1 J = 1 kg ·m2 · s–2 = 6.24 · 1018 eV.
Substituting the kg in the dimension of D gives

1 kg  = 6.24 · 1018 eV · m– 2 · s2

   
1 kg3/2  = 1.559 · 1028 eV3/2 · m– 3 · s3

Insertion into the dimensions for D gives the right dimension and yields for masses given in kg, length in m and
energies in eV:

D  =  
1.559 · 1028 




2m 



3/2
 · E 1/2   [eV–1 · m–3 ]

2π 2 2

           

 
 =  7.90 · 1026  · 





2m 



3/2
· E 1/2  [eV–1 · m–3]

 2

Effective Density of States

In all practical calculations, the effective density of state Neff is used instead of D(E). Neff is just a number, lets see
how we can this from the free electron gas model.

Lets just look at electrons in the conduction band; for holes everything is symmetrical as usual. We want to get
an idea about the distribution of the electrons in the conduction band on the available energy states (given by
D(E)).

We have in fulll generality for ne = density of electrons in the conduction band

ne  = 

E*
⌠
⌡
EC

D(E') · f(E',T ) · dE'

With f(E', EF, T) = Fermi-Dirac distribution, and the integration running from the bottom of the conduction band to
the top of the band at E*, (or to infinity in practice). The dash at the symbol for the energy, E', just clarifies that
the zero point of the energy scale is not yet the bottom of the conduction band.
Of course we use the Boltzmann approximation for the tail end of the Fermi distribution and obtain

ne  = 

∞
⌠
⌡
EC

D(E') · exp 
–

E' – EF

kT


   · dE

If we now take the bottom of the conduction band as the zero point of the energy scale for D(E) , we have E = E' – EC
with EC = energy of the conduction band. Insertion in the formula above gives
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ne  = exp 
–

EC – EF

kT


   ·  

∞
⌠
⌡
0

D(E) · exp 
–

E

kT


   · dE

Inserting the density of states from above with the abbreviation

N0  =  
1

2π 2





2m

2





3/2

gives a final formula for computing

ne  = exp 
–

EC – EF

kT


   · N0 ·  

∞
⌠
⌡
0

E1/2 · exp 
–

E

kT


 · dE

The definite integral [E1/2 · exp(–E/kT)]dE can be found in integral tables; its value is (1/2) · (π1/2) · (kT)3/2 .
 

Insertion, switiching from  to h, and some juggling of the terms gives the final result defining the effective density of
states Neff

ne  =  2·




2π · m · kT 



3/2
 · exp 

–
EC – EF 

    =: Neff · exp 
–

EC – EF 


h2 kT kT

We now have the final result

Neff  =  2 ·




2π · m · kT 



3/2

h2

And this is the formula we used in the backbone.

What about numbers and the dimension? We have

[Neff]  = kg3/2 · eV3/2 · eV–3 · s–3  =  kg3/2 · eV–3/2 · s–3

From before we have 1 kg3/2 = 1.559 · 1028 eV3/2 · m–3 · s3. Inserting this finally gives (for masses given in kg,
length in m and energies in eV):

Neff   =   4.59 · 1015 · T3/2 cm–3  

    =   2.384 · 1019 cm–3    
(T = 300 K)

   =   2.384 · 1025   m–3  

And those are very useful numbers – in particular, becasue they are quite close to the "real" (i.e. measured)
values for Si.
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Basic Semiconductor Terms

 
In this module we list some basic semiconductor properties and the corresponding lingo in alphabetical order. Some,
but not all !

It is assumed that you are familiar with these subjects at the level insinuated here.

Some, but not all topics are explained in some detail in the backbone modules.

 

Acceptors

Doping defects that introduce an energy state in the band gap close to the valence band.

At medium temperatures – generally meaning room temperature – electrons from the valence band will
completely fill these states leading to a density of holes in the valence band that is about equal to the density of
the acceptor states.
 

Conductivity σ

A specific propery of any material, defined as the relation between electrical field E and current density j

j  = σ · E

Generally, the conductivity σ is a tensor of second order and may depend on other parameters including the firld
strength E.
As long as the current–field relationship is linear (demanding σ ≠ σ(E) ), the material exhibits ohmic behavior.

σ can always be expressed in terms of the density n of carriers reponsible for conduction, their charge q, and
their mobiltiy µ, via

σ  = q · n · µ

Diffusion length

The diffusion length L always refers to minority carriers. It is the average distance a minority carrier moves away
from its point of origin, given by

L  = D · τ


1/2

With D = diffusion coefficient and τ = time for the movement (= life time for a minority carrier).

The diffusion length is a prime material parameter that comes up in many formula, it can be rather large (up to
mm) in indirect semiconductors and it is very sensitive to certain lattice defects.
 

Donors

Doping defects that introduce an energy state in the band gap close to the conduction band that is occupied by
an electron at low temperatures.
At medium temperatures these electrons will move to the conduction band leading to a density of electrons in the
conduction band that is about equal to the density of the donor states.
 

Doping

Controlled introduction of lattice defects that introduce energy states for electrons in the band gap

Often done with substitutional atoms that are to the left or right of the element they replace in the periodic table

But all defects – e.g. dislocations and grain boundaries – may have energy levels in the band gap, too, and thus
may introduce doping.
 

Electrons in semiconductors

Mainly refers to the free electrons in the conduction band, contributing to the conductivity.
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In addition, this may also refer to electrons present on various additional states inside the band gap (e.g., the
energy levels of donors and/or acceptors).
However, although the valence band is mainly filled with electrons, one avoids considering them explicitly – by
just treating the empty valence band places (called holes; see below).
 

Holes in semiconductors

States in the valence band not occupied by electrons. Quasiparticles; behave for all practical purposes like free
positively charged electrons.
 

Intrinsic semiconductors

Undoped "perfect" semiconductors with properties exclusively governed by the crystal. The Fermi energy is in the
middle of the band gap; electron and hole densities are equal (= ni).
 

Life time

Usually the average time τ a minority carrier, after it was generated by thermal fluctuations or other energy
expenditures, "lives" before it disappears again by recombination. Refers to thermal equilibrium in this case.
In more complicated circumstances – e.g. in space charge regions or in non-equilibrium conditions – life times
must be considered more carefully; a distinction between generation and recombination life time, e.g., might be
necessary.
 

Majority carriers

The kind of carrier – electrons or holes – being present in the larger density.

Majority carriers are electrons in the case of doping with donors, and holes in the case of doping with acceptors.
 

Mass action law

Traditional, albeit somewhat misleading name for the relation between the equilibrium densities of electrons, ne ,
holes, nh, and the intrinsic density, ni, in doped semiconductors:

nh · ne  = ni2

Directly obtainable by using the Boltzmann approximation for the occupation of the bands.
 

Minority carriers

The kind of carrier – electrons or holes – being present in the smaller density.

Minority carriers are holes in the case of doping with donors, and electrons in the case of doping with acceptors.
 

n-type semiconductor; n-doped, n-doping

Semiconductors with the majority carriers being electrons. Doping thus was done with donors .
 

p-type semiconductor; p-doped, p-doping

Semiconductors with the majority carrierers being holes. Doping thus was done with acceptors .

Do not mix up p-doped with P-doped ("P": phosphorous) in silicon! P is a donor in Si; P-doped Si is an n-type
semiconductor.

   
p-n junction

A transition from p-type to n-type within one piece of material. Electrically, a p-n junction is a diode (i.e. it has
rectifying properties).
The "ideal" p-n junction is a paradigm of semiconductor science. It is usually highly idealized and considered to
be

An abrupt junction, i.e. the doping changes from p-type to n-type abruptly,
with constant doping levels on both sides of the junction, being
one-dimensional, and being
"large", i.e. the p and n areas are much longer than the diffusion length of the carriers.
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Real p-n junctions, especially in integrated circuits, do not even come close to these assumptions. Nevertheless,
the results of the ideal p-n junction contain almost everything needed to tackle the real junctions and thus should
be well understood.
 

Perfect semiconductors

Ideally, a perfect crystal contains only those crystal defects necessary for device function – i.e. doping atoms
and perfect interfaces. What makes an interface perfect is hard to define; in case of doubt: the absence of
interface states in the band gap.
Si crystals are closer to being perfect then anything else (in the unanimated world, that is). Their dislocation
density is zero (which has not been possible to achieve for practically all other (large) crystals), the level of
unwanted point defects is in the (1 . . . 10) ppm region for O and C, respectively, and in the low ppb if not ppt
region for everything else.
There are, however, unavoidable remnants of the intrinsic point defects (vacancies and self-interstitals) that were
present in thermal equilibrium at high temperatures. They may occur in any forms of microclusters; not yet fully
understood.
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Basic Equations

This side just serves as a reminder since nobody (extrapolating from myself) can remember all the basic equations
(and some secondary stuff) with their most important connotations in detail.

You should, however, be rather familiar with all of them.

Some equations are just briefly mentioned, some are dealt with in more detail - as the occasion demands.

 

Schrödinger Equation

The Schrödinger equation is one of the most celebrated equations in physics, not least because it is a differential
equation that was much more "understandable" to the contemporaries of the 20 th century giants of physics who
invented - or discovered? - quantum theory than the more abstract matrix formulation of Heisenberg .

In the context of the fully developed formalized quantum theory of today, the Schrödinger equation has lost some
of its clamor - it just happens to be the Eigenwert equation for the energy operator (also called Hamilton
operator), but since the energy eigenvalues are of course of prime importance, the Schrödinger equation is still a
major equation in quantum theory.
Here is the general Schrödinger equation

–  

2

2m
 · ∆ψ '(r,t) + U(r,t) · ψ'(r,t )  = 

i
 · 

∂ψ'(r,t)

∂t

U = U(x,y,z) = potential energy, and all other symbols have their usual meaning. The ∆ operator is written large
and in blue to avoird confusion with the regular ∆ denoting small differences.
It is hard to imagine retrospectively how revolutionary an equation must have been that intrinsically included i, the
unit of imaginary numbers, in a relation purporting to describe physical reality. Pythagoras, it is claimed, had one
of his students executed because the poor guy claimed that irrational numbers actually existed. Fortunately the
tolerance level in science has gone up since then (though I'm not so sure about religion, politics, and so on).

Stationary states with sharp values of the total energy that do not change in time can be described by

ψ '(r ,t)  = ψ (r) · exp (i ω t)

Insertion in the general Schrödinger equation gives the well-known time independent form

–  

2

2m
 · ∆ψ (r,t)  +  


U (r)  –  Etotal


 ·  ψ( r,t)  = 0

With Etotal = · ω.

For some given potential, the problem is thus reduced to solving a second order partial differential equation, which is
usually not easy, but essentially a mathematical problem.

Physics only comes in again by

Finding some particular symmetries of the problem that must have a direct bearing for the symmetries of
the solution, and thus make the math somewhat easier. That is what the Bloch theorem does, for
example.
Finding some physical approximations that allow to write down a simplified equation that still makes some
sense. The free electron gas approximation is an example.

Combining the Schrödiner equation with the special theory of relativity yields the Dirac equation .

Another wonderul thing happens at that level: The math involved now cannot be satisfied by describing things with
complex numbers, it actually demands matrices.
As a consequence, spin and antiparticles emerge naturally.

Nobody so far has managed to combine the Schrödinger equation with the general theory of relativity; the two even
appear to be antoagonistic. This is in fact one of the biggest unsoveld problems in fundamental physics.
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de Broglie Equation

The de Broglie equation, coupling the momentum p of a particle with its wavelength λ - an absolutely revolutionary
concept when it was introduced - is very simple

λ  = 
h

p

It is not a fundamental equation but follows from the axioms of quantum mechanics. de Broglie, however, arrived
at it in a completely different way (there was no quantum theory then): By coupling the most famous equation of
all (E = mc2 from Einsteins special theory of relativity) and E = hν from Planck and Einstein in a rather
ingenious way.
 

Mass Action Law

The mass action law, while simple in appearance, is one of the trickier laws of thermodynamics.

It follows from considering equilibrium in a system where the number of particles may change, but in a connected
fashion: Any disappearance of some kind of particle from the ensemble must lead to the appearance of some
other kind. In other words: We are looking at chemical reactions and everything else that follows this very general
restriction.
The reaction equation describing the connection between the particles Ai can always be expressed as

 
Σ
i

νi · Ai  = 0

and the ν i are the stoichiometric constants. The mass action law gives a relation between the equilibrium
concentrations of the particles, [Ai], that takes the general form

Π
i

[Ai ]ν  = Σ [Ai]Σ ν 
  · exp –

Σi gi·ν

RT

With gi = free enthalpy of component i and the concentrations measured in mols!.

In this form, written with with the gas constant R, it is obviously formulated for mols as a measure of
concentrations. Note that the formula may change significantly if you switch to other measures of concentrations,
e.g. to particle numbers or densities.
Working with the mass action law is difficult - there are a number of pitfalls. Consult the links to the Hyperscript
"Defects" for these topics:

The chemical potential as the starting point for the mass action law
The mass action law derived from chemical potentials
The mass action law derived in a direct "physical" way
Pitfalls and extension of the mass ation law
Working with the mass action law in general
Working with the mass action law for defects; in particular electrons and holes

 

Einstein Relation
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The Einstein relation, or as it should be properly called, the Einstein-Smoluchowski relation, couples the mobility µ
and the diffusion coefficient D via
 

D  = 
kT

e
· µ 

The mobility µ, before only defined as some kind of specific constant relating the average drift velocity of carriers
in an electrical field, now is a general parameter for all diffusing particles, even without any driving force, it is
essentially the diffusion D somewhat disguised.
The atomistic theory of diffusion correlates the diffusion coefficient to atomistic properties via

D  = g · a2 · ν0 · exp –
HM

kT 

With g = lattice factor in the order of 1, a = lattice constant, ν0 = vibration frequency of the diffusing particle
(rougly 1013 Hz), HM = activation energy of migration (about 0,5 - 5 eV for particles (= atoms) in "common"
crystals.

This is, of course, only valid for diffusion where all individual jumps occur withthe same mechanism.

If several mechanisms act otgether (e.g. a particle is jumping around in a lattice, but every now and then gets
trapped at a defect. The jumping away from the defect the is a different mechanism then the jumps in the lattice),
the total diffusion coefficient will be some mixture of the mechanisms.

In any case, the mobility can now be seen as a material constant coming directly from atomic mechanisms.

 

Fick's laws

Fick's laws are purely phenomenological laws relating the particle current j of diffusing particles to the concentration
gradient ∇c as the driving force.

Fick's first law is quite simple

j  =  – D · ∇ · c

With the continuity assumption, i.e. no particles are generated or lost, the change of the particle concentration in
some volume element at (x,y,z) is easily derived and called Fick's second law.

∂ c

∂t
 =  –  div(j)  = D · ∇ 2 · c  = D · ∆c

While these differential equations look deceptively simple, their solutions generally are not. Even simple cases
usually involve statistical functions - as well they should, considering that diffusion is a statistical phenomenon.
Fick's empirical laws are easily derived from a consideration of simple atomic mechanisms.

The basic underlying statistical concept is random walk, as encountered in simple diffusion mechanisms, e.g.
vacancy or interstitial diffusion. For more complicated mechanisms, Fick's laws can not be applied anymore
without proper corrections. Note that diffusion in semiconductors is amost always such a "more complicated"
case.
If there are other driving forces besides the concentration gradients, and if particles are generated and/or
disappear with certain ((x,y,z) dependent) rates (consider i.e. carriers generated by light and disappearing by
recombination), additional terms must be added.

Poisson Equation
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The Poisson equation is not a basic equation, but follows directly from the Maxwell equations if all time derivatives are
zero, i.e. for electrostatic conditions. The first Maxwell equation for the electrical field E under these conditions is div
D = ρ or, for spatially homogeneous dielectric properties,

∇ · E  = 
ρ

ε · ε0

Using the potential V, E can be expressed as

E  =  –  ∇ · V

Insertion in the first Maxwell equation yields the Poisson equation!

– ( ∇ · ∇) · V  =  
ρ0

ε · ε0

∇ ·∇ · V, of course, can be written as

(∇ · ∇) · V  = ∇2 · V  = 
∂2 V

∂ x2
  + 

∂2 V

∂ y2
 +  

∂2 V

∂ z2

This gives the Poisson equation in its usual form

– ∆ V  =  
ρ 

ε · ε 0

We have used the definition of the electrical field E as the (negative) gradient of the potential; E = – ∇V .

Since the second derivative of the electrical potential times ε · ε0 is just the charge density as asserted by
Poisson's equation, integrating the charge density once essentially yields the electrical field strength, integrating
it twice the potential. We will use this feature quite often.

A few words to the signs:

The negative sign comes from the general definition of a potential, which applies to the electrostatic potential V,
too. The existence of a potential demands that the work done to a unit charge moving in the gradient of the
potential is independent of the path.
In other words, moving a charge q in an electrical field from A to B, the work W done is

W  =  – q

B
⌠
⌡A

E · ds  =  q

B
⌠
⌡A

∇ V · ds  =   q V(B) – V(A) 


So if q is negative, moving it to a point with a higher potential (assuming that V(B) > V(A)), gives a negative sign
of the work – i.e. work is coming out of the system. For a positive charge, W is positive and work needs to be
done to the system – everything is as it should be.
 

Newton's Laws
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Newton's laws are all too familiar; we will therefore just look at the first one, stating that

F  = m · a

i.e. a mass m accelerates with the rate a = dv/dt (v = velocity) if a force F acts on it.

Written in three dimensions and with the force expressed as the gradient of an appropriate potential by F = – ∇V (r),
we have

m ·
d2r

dt2
  +  ∇ · V(r)  = 0

which looks a lot less simple.

The formulation most appropriate for this lecture is to express Newton's law via the momentum p = m · v by
substituting a = dv/dt = (1/m) · dp/dt and obtaining

d p

dt
 +   ∇ · V(r) = 0

Continuity Equation

The continuity equation is simply a balance equation, stating that the change in density n (of whatever) that you will
find at a time t in a given volume element at (x,y,z), is determined by how much flows in per time unit minus how
much flows out.

Think of your bank account. The amount of money in it will change depending on how much is deposited minus
how much is withdrawn.

While this is elementary, the statement contains two not so obvious topics that are also easily understood thinking
about your money in the bank

No statement whatsoever is made considering the absolute amount of money in your account. If you deposit
$ 1,000 a day and withdraw $ 500, you are finding $ 500 more in your account and your new balance now might
be $ 1,000,500 instead of $ 1,000,000 , or $ 250 instead of –$ 250, or whatever – only you know because you
know the initial condition .
No statement whatsoever is made considering the absolute amount of deposits and withdrawal either. You would
have obtained the same result for the example above if you would have deposited $ 500,000 and withdrawn
$ 499,500 – only the difference counts.

In mathematical terms, the continuity equation writes

∂n

∂t
 =  – ∇· jpart(x,y,z)

and jpart is the particle current of whatever particles you are considering,

If j is an electrical current while ρ is the charge density, you may express it as

∂ρ

∂ t
 =  – ∇ · j(x,y,z)

In this version of the continuity equation it is assumed that the particle number is conserved, i.e. no particles are
generated or annihilated. So, integrating n (or ρ) over the total volume where particles (or charges) might be, always
gives the same total number of particles (or the same total charge). This is the continuity assumption.

This is a perfectly good assumption for classical particles and always applicable to, e.g., the flow of water or air.

It is not necessarily, however, a good assumption for electrons and holes in semiconductors.
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First of all, electrons and holes disappear all the time by recombination and appear by generation. However, since
in equilibrium the generation rate G and the recombination rate R are identical, there is a constant particle
number on average and we can use the continuity equation in its simple form.
But if we now illuminate a defined part of a semiconductor, we have some defined localized additional generation
and some enhanced recombination somewhere, too. The "somewhere" comes from the fact that the
recombination does not have to take place wherever the generation took place – the carrier diffuse away before
the eventually disappear.

The continuity equation now must be written as follows:

∂ n

∂ t
 = G(x,y,z)  –  R(x,y,z)  – ∇· jpart(x,y,z)

While we may know G(x,y,z) for an illuminated semiconductor, R(x,y,z) is not known a priori, and solving the
continuity equation together with the two other equations (Ohm's law and Fick's law), making statements about
currents may not be easy.
 

Maxwell's Equations

Maxwell's equations contain all there is to know about electromagnetic phenomena in a classical world (including the
special theory of relativity). They essentially link the abstract quantities electric field, magnetic field, charge and
electrical current.

Note that the Maxwell equations contain (or demand, as you like it) the special theory of relativity, because the
velocity of charges is involved. Which velocity? The number you get depends on the frame of reference you
chose.
The paradigmatic "experiment" to that is to look at two electrons, moving with some velocity in parallel. They will
attract each other magnetically. What happens if you chose a frame of reference that is tied to the electrons?
They are now at rest - no more magnetic attraction?

This is a very difficult question. Look up the answer in any good textbook, e.g. in the Feynman lectures II; chapter 13-
6.

Here is an overview, giving the common vector formulation and the integral formulation in prose. Some more laws
either following form the Maxwell equation, or needed in the general context, are also given
 

1. equation

∇ · E  = 
ρ

ε0

(Flux of E through a closed surface) = ( Charge
inside)/ε0

   
2. equation

∇ × E  =  – 
∂B

∂t

Line integral of E around a loop = -∂/∂t (Flux of B
through the loop)

   
3. equation

∇ · B  = 0
(Flux of B through a closed surface) = 0
There are no magnetic "charges"

   
4. equation

c2∇ × B  = 
j

ε 0
 + 

∂ E

∂ t

c2 · (Integral of B around a loop) = (current
through the loop)/ε 0 + ∂/∂ t (Flux of E through
the loop)
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These are the Maxwell equations. Note that they are not only valid for vacuum, but also for materials if the correct
charge density is included (we do not really need the electrical "displacement" D. We also use what is often called
"magnetic induction B " as the primary quantity calling it "magnetic field", and not the outdated secondary quantity H
.

The conservation of total charge (essentially the continuity equation "falling out" of the Maxwell equations) gives
us.
 
Charge
Conservation

∇ · j  =  –  
∂ρ

∂t

Flux of current through a closed surface) = –δρ/δ
t(Charge inside)

   
The coupling to classical mechanics is achieved by introducing the force F via the force law and Newtons law
expressed for the momentum p

  
Force law

F  = q · ( E + v × B)
Also known as Lorentz law.

   
Newtons law

F  = 
dp

dt

And the special theory of relativity is included by using the relativistic momentum

 
Special
relativity

p  = 
m · v

1 – v2/c2

If we throw in the (classical) law of gravitation, we have almost all basic equations of classical physics as it was
known up to about 1905, in just half a page!
 

Gravitation

F  =  –  Gr  · 
m1 · m2

r2

Gr is the gravitational constant
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Debye Length

The link brings you to a suitable module of the Hyperscript "Electronic Materials".
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The cosh Function

The y = cosh x function is defined as

cosh x  = 
e x  +  e – x

2

The other hyperbolic functions are

sinh x  = 
e x  –  e – x

2
   

tanh  = 
e x  –  e – x

e x  +  e – x

What they look like you can find out for yourself by activating the JAVA module below

Here a few examples as how to write equations

cos(x) exp(x)
cos(x*2)  exp(1/x)
cos(x/40)  x^2
cosh(x)  1/x^2
cosh(40*x)  1/(x^3+10)
  1/(exp(x-20)+1)
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Simple Proofs of Bloch's Theorem

The Proof

We first give a very short proof for a special case which is taken from the book of Kittel ("Quantum Theory of Solids").
It treats the one-dimensional case and is only valid if ψ is not degenerate, i.e. there exists no other wavefunction with
the same k and energy E.
 

We consider a one-dimensional ring of lattice points with the geometry as
shown in the picture.

This is of course just a representation of a one-dimensional crystal consisting
of N atoms with spacing a and periodic boundary conditions.

 

The potential V thus is periodic in x with period length a, i.e. we have V(x) =
V(x + s · a) with s = integer.

 

 
The decisive thought invokes symmetry arguments. Since no particular coordinate x along the ring is different in any
way from the coordinate (x + a), we expect that the value of any wave function ψ(x) will differ at most by some factor
C from the value at (x + a), i.e.

 

ψ(x + a)  = C · ψ(x)

 
If we now proceed from (x + a) to (x + 2a) , or to x + Na, we obtain

 

ψ(x + 2a)  = C 2 · ψ (x)   
     

ψ(x + Na)  = CN · ψ (x)  = ψ(x)

 
because after N steps we are back at the beginning.

We thus have CN = 1 and C must be one of the N roots of 1, i.e.

C  =  exp
i · 2π s

N

With s = 0, 1, 2, 3, ..., N – 1

We now have ψ(x + a) = ψ(x) · exp(i2πs/N) and this equation is satisfied if

 

ψ (x)  = uk(x) · exp
i · 2π · s · x

N · a

 
With uk(x) = uk(x + a), i.e. for any function u that has the periodicity of the lattice.

Try it:
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 ψ(x + a)  = uk(x + a) · exp
i · 2π · s · (x + a)

N · a

 ψ(x + a)  = uk(x) · exp
i · 2π · s · x

N · a
  ·  exp

i · 2π · s

N
 = ψ (x) · exp 

i 2π · s

N

 
If we introduce k = 2πs /Na we have Bloch's theorem for the one-dimensional case.
q.e.d.

The Problem

This "proof", however, is not quite satisfactory. It is not perfectly clear if solutions could exist that do not obey Bloch's
theorem, and the meaning of the index k is left open. In fact, we could have dropped the index without losing anything
at this stage.

It does, however, give an idea about the power of the symmetry considerations.

A very similar proof is contained in the relevant Alonso–Finn book ("Quantum and Statistical Physics"). It uses a
slightly different approach in arguing about symmetries.

Again, we consider the one-dimensional case, i.e. V(x) = V(x + a) with a = lattice constant.

But now we argue that the probability of finding an electron at x, i.e. |ψ(x)|2 , must be the same at any
indistinguishable position, i.e.

|ψ(x )|2  = | ψ(x + a)|2

This implies

ψ(x + a)  = C · ψ(x)
   
|C|2  = 1

We thus can express C as

C  = exp (i · k · a)

for all a and k. At this point k is an arbitrary parameter (with dimension 1/m). This ensures that |C|2 = exp (ika) ·
exp (–ika) = 1
We thus have

ψ(x + a)  = exp(ika) · ψ(x)

And this is already a very general form of Blochs theorem as shown below.

Writing it straight forward for the three-dimensional case we obtain the general version of Bloch's theorem:

ψk(r + T)  = exp (ik · T) · ψk(r)

with T = translation vector of the lattice and r = arbitrary vector in space.

The index k now symbolizes that we are discussing that particular solution of the Schrödinger equation that goes
with the wave vector k.

The generalization to three dimensions is not really justified, but a rigorous mathematical treatment yields the same
result. The more common form of the Bloch theorem with the modulation function u(k) can be obtained from the (one-
dimensional) form of the Bloch theorem given above as follows:
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Multiplying ψ (x) = exp(–ika) · ψ (x + a) with exp(–ikx) yields

exp (–ikx) · ψ (x)  = exp (–ikx) · exp(–ika) · ψ(x + a)  = exp (–ik · [x + a]) · ψ(x + a)

This shows unambiguously that exp(–ikx) · ψ(x) = u(x) is periodic with the periodicity of the lattice.

And this, again, gives Bloch's theorem:

ψ(x )  = u(x) · exp (ikx)

Once more, no index k at ψ or u is required. We also did not require specific boundary conditions. The meaning of k,
however, is left unspecified. Of course, the plane wave part of the expression makes it clear that k has the role of a
wave vector, but it has not been explicitly introduced as such.
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Fourier Transforms and Bloch's Theorem

The potential for the electron in a crystal lattice is periodic with the lattice, i.e. V(r + T) = V(r) with T = translation
vector of the lattice. It is therefore always possible to develop V(r) into a Fourier series in reciprocal space and we
obtain

V( r)  = ΣG VG · exp (i · G ·r)

The VG are the Fourier coefficients of the potential.

G is a reciprocal lattice vector; the sum must be taken over all reciprocal vectors and there are infinitely many.
We will, however, no longer use the underlining for vectors.
In simple approximations it will be generally sufficient to consider only a few vectors of reciprocal space; i.e.,
most VG are 0.

The wave function ψ(r) can also be Fourier transformed. Without loss of generality it can be expressed as a sum of
the plane waves which are the solutions of the free electron gas problem (with V = 0):

ψ(r)  = Σ k Ck · exp (ikr)

The Ck are the Fourier coefficients of the wave function and k denotes the wave vector as obtained from the simple
free electron gas model (e.g. kx = ± nx · 2π/ Lx).

Since L x must be a multiple of the lattice constant a, i.e. Lx = N · a (with N = Lx/a = number of elementary cells
in L x), all k-vectors can be written as

kx  = ±  
nx · 2 π

N · a

We know that 2π/ a is simply the magnitude of the reciprocal lattice vector characterizing the set of planes
perpenduclar to the direction of a (if taken as a unit vector of the elementary cell) with spacing a; i.e. for the {100}
planes, nx · 2π/a gives the whole set of reciprocal lattice vectors with the same direction, and 1/N intersperses N
points between the reciprocal lattice points defined by n x.
In other words and generalized for three dimensions: The allowed points for k-vectors are points in reciprocal
space interspersed between the lattice points of the reciprocal lattice.

We have the following picture, with (for reasons of clarity, very few) blue k-points between the red G-points:

The picture makes clear that any arbitrary wave vector k can be written as a sum of some reciprocal lattice vector
G plus a suitable wave vector k'; i.e., we can always write k = G + k' and k' can always be confined to the 1.
Brillouin zone (= the elementary cell of the reciprocal lattice).
Alternatively, any reciprocal lattice vector G can always be written as G = k – k' This is a relation that should
look familiar; we are going to use it a few lines further down.

If we now pluck both expressions into the Schrödinger equation
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– 

2

2m
 ·  ∆ψ  +  V(r) · ψ(r)  = E · ψ(r)

and do the differentiations, we obtain

Σk 
(  · k)2

2m 
· Ck · exp (ikr)  +  Σk' ΣG  Ck' · VG · exp (i · [k' + G] · r)  = E · Σk Ck · exp (ik r)

We have written k' in the double sum to indicate that it is not important how we sum up the components. That
allows us to rename the summation indices and to replace k' as shown:

k' + G  = k
   

k'  = k – G

Reshuffling the equation we obtain

Σ k exp (ik · r)  · 






(  · k)2

2m
 – E 

 · Ck + ΣG (Ck – G · VG)




  =  0

If this looks a bit like magic, you should consult the link.

Since this equation holds for any space vector r, the expression in the red brackets must be zero by itself and we
obtain




(  · k)2

2m
 –  E 

  · Ck + ΣG(Ck – G  · VG)  = 0

This is nothing but Schrödinger's equation for crystals written as a collection of algebraic equations. It couples the
Fourier coefficients VG of a periodic potential (which we know) to the Fourier coefficients Ck and Ck – G of the wave
functions (which we want to calculate) in an unique way.

If you have trouble visualizing this, write some parts of this infinite system of equations in a matrix as shown in
the link for a slightly different situation.

The problem now is much simplified. While our original Fourier expansion of the wave function was a sum containing
a large number of coefficients Ck because we have a large number of k's, we now only have to consider a sum over
G's - of which we have far less (if still infinitely many).

This is so because our system of equations from above only contains Ck – G. Solving it, gives a definite
wavefunction for any chosen k as a sum over just Ck – G coefficients.
Since we can express all k vectors outside the 1st Brillouin zone as a sum of a k-vector in the first Brillouin zone
and some G-vector (see above), we only have to consider N terms for the k-values.
Since we have N k-vectors, we have N sets of equations, each one describing one wavefunction ψk of which we
now know that it can be expressed as a Fourier series over points in reciprocal space positioned at k – G with G
= any reciprocal wave vector. This means we have

ψk(r)  = ΣG Ck – G · exp(i · [k – G] ·r)

or, after rewriting the exponential
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ψk(r)  = ΣG Ck – G · exp (–iGr) · exp (ikr)

The first term shown in red, upon inspection, is nothing but the Fourier series of some function uk(r) that has the
periodicity of the lattice; it is defined by:

uk(r)  = ΣG Ck – G · exp (–iGr)

We thus obtain

ψk(r)  = uk(r) · exp (–iGr)  = ΣG Ck – G · exp (–iG r) · exp (ik r)

And this is Bloch's theorem that we endeavored to prove.
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Double Sums and Index Shuffling

Double sums over indexed parameters are usually bad enough, but doing arithmetic with the indices is often a bit
mind boggling. Lets look at this in some detail:
We have the double sum over k'and G with both indices running from –∞ to +∞. If, for the sake of simplicity, we
consider a one-dimensional case (i.e. k' now denotes just one component) we have for the double sum

ΣΣ   = Σk' ΣG Ck' · VG · exp(i · [k'+ G]) · r)

We can write this double sum as a matrix with, e.g., constant values of the Ck' in a row and constant values of
the VG in a column . Shown is the part with k' = 4 and k' = 5, and likewise G = 7, 8, 9.

+ + +
+ C4 · V7 · exp(i(4 + 7)) + C4 · V8 · exp(i(4 + 8)) + C4 · V9 · exp(i(4 + 9)) +

+ + +
+ C5 · V7 · exp(i(5 + 7)) + C5 · V8 · exp(i(5 + 8)) + C5 · V9 · exp(i(5 + 9)) +

+ + +

Doing the sum does not depend on which way we take through the matrix, as long as we do not drop any element.

"Intuitively" one would tend to go horizontally and back and forth through all the terms, but we can just as well
move diagonally, following the lines indicated by identical color.
In this case, the exponent is constant, we can name it k. The sum over a diagonal now means summing over all
contributions where k' + G = const = k

We thus can rewrite the double sum by adding up all the diagonals with fixed exponents and obtain the expression
used before:

Σk' ΣG Ck' · VG · exp (i · [k' + G] · r)  = Σk – GΣG Ck – G · VG · exp (ikr)
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Exercise 2.1-1 Free Electron Gas with Constant Boundary Conditions

Consider the free electron gas model but let the boundary conditions be: ψ(0) = ψ(L) = 0, i.e. we have fixed
boundary conditions.

Derive the solution to the Schrödingerequation and the density of states for this case.

Show that the number of states is the same as for the periodic boundary conditions as given in the backbone

 

 

Link to the solution
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Exercise 2.1-2: Density of States for Lower Dimensions

Calculate the density of states for a one-dimensional semiconductor ("quantum wire") and for the two-dimensional
case.

Draw some conclusions from the results.

 

 

Link to the solution
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Exercise 2.3.5-1

Show the equivalence of the two equations for the minority carrier density

 
The two equations for the minority carrier concentration (here the electrons at the p-side) at the edge of a junction
were

nep(U) 
 SCR

edge
 = nen(U) 

 SCR
edge

 · exp –  
Vn + U

kT

nep( U = 0)  = 
ni2

nhp(U = 0)

The first equation came from simply relating one kind of carriers on both sides of the junction including non-
equilibrium (i.e. voltage U not zero), the second one is simple the mass action law valid for equlibium (i.e. U = 0).

Show that the two equations are equivalent.

Hint: Express nen in terms of nhp. Write down the equation for nh p and reshuffle the energies in the exponent
so that nen and ni can be extracted.
 

Link to the solution
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Exercise 2.1-1

Quick Questions to:

2.1 Basic Band Theory

Here are a few quick questions to 2.1.1: Essentials of the Free Electron Gas

What happens, if you do not choose U = U0 = 0 but U = U1 ?

What does the sentence "...a plane wave with amplitude (1/L)3/2 moving in the direction of the wave vector k"
mean"? Wave vectors, after all, are defined in reciprocal space with a dimension 1/cm. What, exactly, is their
direction in real space?
Recount what you know bout the spin of an electron.

Where does the (1/L)3/2 in the solution of the Schrödinger equation come from? What would one expect for a crystal
with the dimension Lx, Ly, Lz?
What kind of information is contained in the wave vector k?

Consider a system with some given energy levels (including possibly energy continua). Distribute a number N of
classical particles, of Fermions and of Bosons, respectively, on these levels. Describe the basic principles
employed..
How does one always derive the density of states D(E)?

   

Here are a few quick questions to 2.1.2: Diffraction of Electron Waves

Consider a fcc and bcc lattice with lattice constant a = 0.3 nm. Give the distance between {100} planes and the
distance between the corresponding atomic planes. Do the same thing for the {111} plane of a fcc lattice with just
one atom in the base, and for a diamond structure.
Remember the Ewald construction? Describe and explain for what kind of situations it is particularly useful.

Compare the free electron gas model with and without diffraction.

   

Here are a few quick questions to 2.1.3: Energy Gaps and General Band Structure

Draw a one-dimensional realistic periodic potential Now draw in the first Fourier component. Add the probability
densities for finding electrons with k = kBZ. Explain the energy splitting and why ∆E is approximately given by the
first Fourier component of the potential.

   

Solution
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Solution to Exercise 2.1-1 Free Electron Gas with Constant Boundary
Conditions

Consider the free electron gas model but let the boundary conditions be: ψ(0) = ψ(L) = 0, i.e. we have fixed boundary
conditions.

Derive the solution to the Schrödinger equation and the density of states for this case.

Show that the number of states is the same as for the periodic boundary conditions as given in the backbone.

For the basic solution and the dispersion relation (energy vs. momentum / wave vector), due to the boundary
conditions we now obtain

ψ (x, y, z)  = Ak · sin(kx · x) · sin(ky · y) · sin(kz · z)

E  =  

2 · k2

2 m

Obviously, the boundary conditions ψ (x = 0) = ψ (x = L)  = 0 (and analogously so for y and z) are satisfied by

kx  = 
nx · π

L
   

nx  = 1, 2, 3, ...

and analogously so for the y and z direction. The amplitude factor Ak follows from the condition that the
probability to have the electron in the "box" equals 1:

1 = |A k|2 
 L
∫
0

sin2 (kx · x) d x 
 L
∫
0

sin2 (ky · y) dy 
 L
∫
0

sin2 (kz · z) dz

Hence, here we have |Ak |2 = (2/L) 3 , independent of k.

The number of states Z(k) up to a wave vector k is generally given by

Z (k)  = 
Volume of sphere with radius E(k)

Volume of state

For fixed boundary conditions we have

Z(k)  = 
1

8
  · 

4/3 (π · k)3

(π/ L)3
  = 

(k · L)3

6π2

This is exactly what we would get for the periodic boundary conditions – thanks to the factor 1/8.

Where does this factor come from? Easy – since the quantum numbers n are restricted to positive integers in
this case, we can not count states in 7 of the 8 octants of the complete sphere and must divide the volume of the
complete sphere by 8.
This becomes clear if we look at a drawing of the possible states in phase space:
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Solution to Exercise 2.1-2: Density of States for Lower Dimensions

Calculate the density of states for a one-dimensional semiconductor ("quantum wire") and for the two-dimensional
case.

Draw some conclusions from the results.

The number of states Z(k) up to a wave vector k is generally given by

Z(k)  = 
Volume of "sphere" in m dimensions

Volume of state

The volume Vm of a "sphere" with radius k in m dimension is








Volume of sphere = 4/3 π · k3 for m = 3
    

Vm(k)  = Volume = area of circle = π · k2   for m = 2
   

Volume = length = 2k for m = 1

The density of states D(E) follows by substituting the variable k by E via the dispersion relation E(k) and by
differentiation with respect to E.

One obtains the following relations:

 








(E)½ for m = 3
    

Dm(E)  ∝ const.   for m = 2
   

(E)–½ for m = 1

The consequences can be pretty dramatic. Consider, e.g. the concentration of electrons you can get in the three
case for E ≈ 0 eV, i.e close to the band edge.
The question, of course, is: Are there 1-dim. and 2-dim. semiconductors? The answer is: yes – as soon as the other
dimensions are small enough, we will encounter these cases. We will run across examples later in the lecture
course.
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Solution to Exercise 2.3.5-1

We want to show that the following two equations are equivalent for equilibrium:

nep(U ) 
SCR

edge
 = nen (U) 

SCR
edge

 · exp – 
e(Vn + U)

kT

n e p(U = 0)  = 
ni2

nhp (U = 0)

The first equation then simplifies to

nep(U) 
SCR

edge
 = nen(U) 

SCR
edge

 · exp – 
eVn

kT
 =  nen(U ) 

SCR
edge

 · exp – 
∆EF

kT

 
Start with the equation for the majority carrier concentration nhp(U = 0) in general and the definitions of the energies:

nhp(U = 0)  =  Neff p · exp –
EF – EV p

kT  

e·Vn  = Difference of
band edges  = EVp   –  EVn  =  ECp   –  ECn   =  ∆ E F

Consult the solution to the Poisson equation if you are unsure (the relevant diagram is reprinted below) and recall
that in the band diagram, the energy scale refers to electrons, which carry a negative electric charge – so that the
electrostatic potential contributes with a negative sign.
Also note that EF , of course, is constant in equilibrium, and ∆EF thus refers to the difference in Fermi energies
before the contact !
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E Vp thus can be expressed as EV p = EVn + ∆EF .

This brings you already to the n-side. However, you want to find nen in the equation, and for that you need a
factor ECn – EF.
So, express EV n in terms of E Cn via EV n = ECn – Eg with Eg = band gap. This yields

nhp(U = 0)  =  Neff p · exp –
EF – ECn + Eg – ∆ EF

kT

You now have terms that occur in the definition of the electron density in n-Si [namely, EF – EC n = – (EC n – EF)]
and for the intrinsic carrier density (namely, Eg).

So, multiply with Neff n / Neff n, remember that ni2 = Neffp · Neffn · exp – Eg/(kT), and 1/nen = 1/N effn ·
exp[(E Cn – EF)/(k T)]; thus, you have

nhp(U = 0)  = 
ni2

nen
 · exp 

∆EF

kT

This gives for nen:

nen(U = 0)  = 
ni2

nhp
 · exp

∆ EF

kT

We now can substitute nen in our first equation and obtain

ne p




SCR
edge

 = 
n i2

nhp
· exp 

∆EF

kT
· exp –

∆EF

kT

 ⇒    nep  = 
ni2

nhp

That is exactly the second equation – Q.E.D.
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Solutions to

Quick Questions to

2.1 Basic Band Theory

Solutions to quick questions to 2.1.1: Essentials of the Free Electron Gas

What happens, if you do not choose U = U0 = 0 but U = U1 ?

The Energy scale for the total energy E moves up or down by U1 since U1 · ψ can be added to E · ψ.

What does the sentence "...a plane wave with amplitude (1/L)3/2 moving in the direction of the wave vector k"
mean"? Wave vectors, after all, are defined in reciprocal space with a dimension 1/cm. What, exactly, is their
direction in real space?
The velocity vector of a car in real space has the dimension cm/s - the dimension 1/cm for wave vectors thus means
nothing. The wave vector comes into being by writing the components of a plane wave as follows

ψ(xi, t)  = A · sin · 
2π xi

λi

 –  ω · t 

With vectors we get

ψ(r, t)  = A · sin ·  r · k  –  ω · t 

This defines k and by definition k is a vector in real space, pointing in the direction of wave propagation.

The better question is: If we know k in reciprocal space (= Fourier transform of the real space), how can we
conclude on the direction in real space? The answer is. Reciprocal lattice vectors with components kh.k.l are
perpendicular to the lattice plane in real space with Miller indices (hkl) - the direction in real space is thus given
Recount what you know bout the spin of an electron.

Everything contained in this "basic" module.1.
Everything contained in this module describing the relation of spin and magnetic moment.2.
The catchword "Spintronics" should also come up in this context.3.

Where does the (1/L)3/2 in the solution come from? What would one expect for a crystal woth the dimension Lx, Ly,
Lz ?
From the normalizing condition. The factor should change from (1/L)3/2 = (1/L3)1/2 to (1/V3)1/2.

What kind of information is contained in the wave vector k ?

"Number" of solution or state.1.
Wave length λ = 2λ /|k|2.
Momentum p = k3.
Total energy E via dispersion relation (for free electron gas E ∝ k24.
Propagation direction pf plane wave with k5.

Consider a system with some given energy levels (including possibly energy continua). Distribute a number N of
classical particles, of Fermions and of Bosons on these levels. Describe the basic priciples.
Fermions = Fermi-Dirac distribution
Bosons = Bose-Einstein distribution (which we don't know so far)
Classical = Boltzmann distribution and an approximation to the two fundamental ones
Do it! Check the link for details to the Boltzmann distribution.
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Fermi-Dirac distribution

 1

f(E, T) =  

 exp 


E – EF

kT


  +  1

Bose- Einstein distribution

 1

f(E , T)  = 

 exp 


E – EF

kT


  –   1

Boltzmann distribution

f(E, T)   =  exp– 


E

kT




 
How does on always derive the density of states D (E) ?

Volume of "onion skin" in phase space.

   

Compare the free electron model with and withour diffraction.

Free elektron gas Free elektron gas
with diffraction

Potential
V(x,y,z)

V = const = 0 Vx = V0 · cos (2π x/a1)
Vy = V0 · cos (2πy/a2)
Vz = V0 · cos (2πz/a3 )
V0 → 0

Wavefunktion
ψ(x ,y,z)

ψ  = 




1

L





3/2

· eikr  ψ   =  




1

L





3/2

· eikr  

except for wavevectors kB that are
being diffracted.

Wave vectors
k

kx = ± nx · 2π / L
ky = ± ny · 2π / L
kz = ± nz · 2π / L

 
ni = 0, ±1, ±2, ...

kx = ± nx · 2π / L
ky = ± ny · 2π / L
kz  = ± nz · 2π / L

 
ni = 0, ±1, ±2, ...

Energy E Total energy = const = Ekin Total energy = const = Ekin
except for wavevectors kB that are
being diffracted; then some potential
energy comes into play.

Dispersion function
E(k)

E  =  

2k2

2m
E  =

2k2

2m

except for wavevectors kB that are
being diffracted.

Density of states
D(E)

Semiconductors - Script - Page 74

kap_2\exercise\sq2_1_1.html



Density of states
D(E)

D(E)  = 
(2me )3/2

2 3π2
E1/2 D(E)  =  

(2 me)3/2

2 3π2
E1/2

as a first approximation., Could be
rather different, however.

Probability of
state being
occupied

f(E,T)
f(E, T)   =   

1

exp 


Ei – EF

kT


 + 1

f(E, T)   = 

1

exp 


Ei – EF

kT


 + 1

the Fermi distributoin always obtains!
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Three Dimensional Brillouin Zones

While the construction of Brillouin zones is simple, the results are not.

Constructing Brillouin zones is a good example for the evolution of complex systems from the repeated
application of simple rules to simple starting conditions - any 12-year old can do it in two dimensions.
Below the results for the first, second and third Brillouin zone (taken from the "Ashcroft/Mermin" and originating
from the 1965 thesis of R. Lück (no computer graphics then!))

These pictures can be found in many text books, which shows that (in physics) you need not improve upon a
good thing.
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Band Diagram Construction for the Free Electron Gas

In order to just understand how the multi-branched band structures always found in all semiconductor books are
constructed, it is sufficient to combine the free electron gas model with the reduced band diagrams.

In other words, we assume a periodic potential with infinitely small amplitude - we have the full implications of
Blochs theorem, but the dispersion curves from the free electron gas are unchanged.
The old energy - wave vector relation E( k) = ( 2/2m) · k2 may be replaced by its periodic version in reciprocal
space

E(k + G)  = 

2

2m
  ·  (k + G)2

Since the reduced band diagram simply prints the E(k + G) values in the interval k = 0 to k = 2π /LG with L G
signifying the extension of the 1st Brillouin zone in the direction of G , we may write

EG(k + G)  = 

2

2m
  ·  (k + G)2

with the subscript G showing that we consider the dispersion curve along a certain direction in reciprocal space.

Reciprocal space can be tricky; if you understand German here is a link with some details.

The trick is that we can pick any reciprocal lattice vector and add it to the k -vectors that are pointing in the
chosen direction, and thus generate a whole system of dispersion curves.

Now a simple example:

Lets take the [100] direction in reciprocal space for a bcc crystal. i.e. the Γ — H direction as the direction for the
k - vectors. This is simply one of the the kx,y,z directions in the old free electron gas model, lets say the kx
direction. The values of kx range from 0 to 2π/ a with a = lattice constant in real space.
The dispersion relation can now be written as

E(k )  = 

2

2m
  ·  





2 π

a
 ·  x · ix  +  G





2

With x = scalar space variable in reciprocal space, restricted to the interval (0, 1), and ix = unit vector in x-
direction in reciprocal space.

All we have to do now is to insert all possible values of G and see what we get.

For G = [000] we have the old dispersion relation:

E[000] (k)  = 

2

2m
  ·  





2π

a





2
  ·  x · ix




2
 :=  C · x2

For the sake of clarity we indexed E with the representation of the reciprocal lattice vector describing this branch
of the dispersion function. What we get is of course the blue branch in the band structur diagram shown below

Now we take a non-vanishing reciprocal lattice vector, e.g. G = [0,-1,0]. We first express G in terms of the lattice
obtaining

G  =  –
2 π

a
  ·  (ix + iz)

Now we evaluate the dispersion relation. We obtain
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 E[0–10]  = 

2

2m
  ·





2 π · x · ix

a
  –  

2π · (ix + iz)

a





2

 E[0–10]  = C · {ix · (x  – 1) -  iz }2  = C · (x2 – 2x + 2)

In the allowed interval for x we thus obtain a parabolic branch with defined end points at x = 0 and x = 1

E[0-10] (x = 0)  =  2C
 

E[0-10](x = 1)  =  C

This is the red branch in the diagram below

If we continue the procedure, we obtain the complete reduced band diagram for the Γ — H branch and for all other
branches we care to compute. This is shown below.
 

 
Adding ± [100] simply means that we move in k - direction into the second Brillouin zone. Indeed, we get the
continuation of the Γ — [000]-H branch - but folded back into the first Brillouin zone as it should be.
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Life Time and Defects

A first few curves showing the relation of the minority carrier life time and point defects
More to come in due time

Shown below is the life time as a function of the doping (or resistivity) for otherwise perfect crystal. This is the
ultimate life time achievable - it can only get worse if crystal defects are added.

Gold - an interstitial impurity atom in Si - is known to be a potent "life time killer" like many heavy metals. This is
the reason why jewelry, watches, make-up (often containing heavy metals) are absolutely forbidden in clean
rooms.
The curve below shows that minute amounts are sufficient to degrade the life time far below the level dictated by
doping alone.
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Space Charge Region and Poisson Equation

We start from a (constant) distribution of positive charges (for n-doped semiconductors) in the space charge region.

The corresponding negative charges are all on the surface; the charge distribution is shown in the first frame of
the illustration.
Poisson's equation states that (for the one-dimensional case).

ε ε 0

d2 V(x)

dx2
 =  –  ρ(x)  = e · ND

For 0 < x < dSCR and = 0 everywhere else. (We can also use the voltage U(x) instead of V(x) if we think as V(x =
∞) = 0). That will also be reflected in the choice of boundary conditions made below.

The drawing below shows the situation, including the slight approximation implicit in our choice of ρ(x). Note that the
x -direction ist to the left in this case.

The first straight-forward integration yields dU/d( x) which is the electrical field strength Ex = –dU/dx , or

εε0

dV( x)

dx
 =  –  ε ε 0 Ex = e · ND · x + const.

With the boundary condition Ex(x = dSCR ) = 0, we obtain (always for the interval x = 0 and x = dSCR , of course):

 

e ·ND · dSCR + const  = 0
   

const  = – e ·ND · dSCR

Ex  = 
1 

εε 0
  ·  (e · NDdSCR   –  e · ND · x)

The second integration yields
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εε0 · U(x) = 
e · ND · x2

2  
  –  e · ND · dSCR · x  +  const.

With the boundary condition U(dSCR) = 0, we obtain .

 –
e · ND · d 2SCR

2 

 +  const.  = 0

      

 const.  = 
e · ND · d 2SCR

2 

Using the proper expression for the integration constant gives gives us the complete voltage function or the shape
of the band bending

εε0 · U(x) = 
e · ND · x2

2  
 – e · ND · dSCR · x  + 

e · ND · d 2SCR

2  

The width of the space charge region can be obtained by considering the voltage at x = 0, where we have U( x =
0) = ∆E F/e.Using this we obtain

εε0

e  
 · ∆EF  = 

e · ND · d 2SCR

2 

This gives us the final result for the width of the space charge region

dSCR  = 
1

e
 · 





2∆EF · ε ε0

ND





1/2

The corresponding curves are shown in the drawing above. We obtained the same formula as before, but now we have
a better awareness of the approximations it contains.

The positive charge distribution was assumed to be box-shaped and uniform. This is a rather good approximation;
the drawing indicates the precise shape of the charge distribution for comparison.
The counter charges are described by a δ -function at the surface; these charges only enter the calculation in the
indirect form of a boundary condition.
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Doping and Mobility

Shown are some standard diagrams (without detailed comment at present)

The first graph gives an Arrhenius representation or Arrhenius plot of the intrinisc carrier concentration in Si
and Ge for various approximations. The (small) effect of the T3/2 factor can be seen for Ge; it is reponsible for the
bending of the rather straight line at high temperatures.

The next plot shows the intrinsic carrier concentration of several semiconductors as a direct function of the
temperature. Note that at room temperature there is a difference of about 7 orders of magnitude.

This plot shows the dependance of the mobility on doping
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Here is the dependance of the mobility on temperature in the interesting T-range for Si

This is the combined result of carrier concentration and mobility: The resisitivity of Si as a function of doping for
electrons and holes separately.
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Mistake in Picture

What is wrong with this picture as shown in the backbone?

Well, let's look at the correct version:

In k-space the only possible states for electrons and holes are right on the dispersion curve. An electron just
somewhere as in the wrong picture, would have a combination of energy E and k-vector (or, same thing, momentum)
that simply does not exist.

Of course, by drawing it 100 % correctly, there would be so many things at the same point (e.g. tip/end of
arrows, symbol for hole, dispersion curve) that the drawing becomes hard to "read".
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Debye Length and Material Parameters

The graphic shows the Debye length of Si. This is not the same as the width of the space charge region! Consult the
link if you have problems with this!
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Passivation of Interface States

This module will expand with time; here are a few basic informations

A case could be made that passivation of surfaces (for the early bipolar devices) and of the Si/SiO2 interface in MOS
technology, was the key process in the beginning of semiconductor technology.

The reason was that early devices simply did not work - the electrical function of properly made pn-junctions and
so on was overwhelmed by the surface states. To understand that, consider that every pn- junction in a real
device will come out at the surfaces somewhere:

The picture shows a typical bipolar transistor in an integrated circuit (from around 1990), and you see a lot of pn-
junctions coming out at the surface.
The solution was simple (but took a while to find): in the old days it consisted of simply oxidizing the whole
device; taking advantage of the low interface state density in a Si/SiO2 interface obtainable with a "good" thermal
oxide.

Modern solar cells, just consisting of the yellow and light blue layer in the schematic drawing above, still have this
problem: The pn-junction comes out at the side, with all kinds of problems.

The good old oxidation recipe, however, cannot be applied anymore - it is simply too expensive.

But now we have MOS devices, and interface states are crucial - even at the low density obtained with good oxides.
"Passivating" the remaining interface states in the critical Si/SiO2 interface of a MOS device is necessary and calls
for a different technology.

Here we use as the last process step, never abandoned, the annealing of the whole wafer for half an hour or so at
typically 450 0C in a H2 or H/N2 ("forming gas") atmosphere. Higher temperatures would probably be better, but
after the Al deposition, 450 0C is the highest temperature you may use without degrading the Al.

All these (and other) processes are generally called passivation, and they all have in common that "somehow"
hydrogen atoms bind to the disturbed atom configurations that cause the deep levels in the band gap with the effect
that the level disappears.

Passivation is still a critical process. A little anecdote to this:

Back in the days of the 16 Mbit DRAM development (around 1989), the process engineers started to wonder if
the H-annealing at the end is still necessary. It has betwen kept as a matter of course throughout the years, was
never questioned, and always applied (Its easy and doesn't cost much).
It was decided to do a few experiments. But this proved not to be necessary, because actually the production
unit (making 4 Mbit DRAMs at this time), independently (and quite involuntarily) performed the experiment - on
large scale: Somebody accidentally hooked up a wrong gas bottle to the H-annealing station containing only N2.
This mistake was quickly discovered, because from this day on the factory only produced junk - the devices did
not work This is the biggest disaster imaginable, so people started to move quickly, and the mistake was
discovered.

This "experiment" thus proved that H2 -passivation still was essential. It proved even more:

After the defunct wafers were annealed again - this time in the proper atmosphere - the devices came back to life.
Everything was as it should be.
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What do we learn from, this?

Don't take interface and surfaces states lightly. The recombination or generation velocity associated with these
deep levels or states are important parameters that can easily control the function of your device.
All semiconductor technology starts with controlling these states. If you are lucky and you can use mono-
crystalline material, you do not have to worry about grain boundary states (a grain boundary, after all, is an
internal interface), but most semiconductors come as poly-crystals. And it is often the inability of dealing with the
surface recombination velocity of these materials that makes them useless for technical application.
And if you think that we do not need new semiconductor - after all we have Si, GaAs, etc. - think again. What
humankind would need quite desperately is a cheap (= polycrystalline) semiconductor for making cheap and
good solar cells. Finding this magic material includes control of its interface recombination velocity.
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Parameter Dependance of Bandgaps

Shown are numerical results for the Kronig–Penney model.

The parameter α can be varied to quantify the strength of the periodic lattice potential.

 

alpha: 1.5

 
 

 
The red curve shows the dispersion relation of the free electron gas, i.e. it's a parabolic function.

The blue curve shows the dispersion relation with band gaps.

The green curve shows the same dispersion relation in the reduced representation.
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Measuring Diffusion Lengths with the ELYMAT

 
Here is an actual research paper describing the ELYMAT technique

New Developments of the ELYMAT Technique

J. Carstensen, W. Lippik, S. Liebert, S. Köster, H. Föll

University of Kiel, Faculty of Engineering,

Kaiserstr. 2, D-24143 Kiel

The ELYMAT technique is now routinely used for the monitoring of wafers and processes in the semiconductor industry,
and no problems are encountered as long as the regular modes are employed with standard wafers. Extension of the
technique to either non-standard Si (e.g. multicrystalline solar Si) or to more involved measurements have been proposed,
but experiments were only partially successful. Applying a deeply penetrating Laser, a new mode is possible, yielding
measurements which are completely independent of the surface condition and offer an improved signal to noise ratio.
Combining several independent measurements as input in a mathematical model of the wafer allows to extract maps of
the surface recombination velocity on both sides of the wafer and to obtain some information about the depth dependence
of the diffusion length. Improvements in hard- and software of the ELYMAT allowed for the first time to obtain diffusion
length maps with very high spatial resolution of multicrystalline Si. In addition, first experiments relating to a leakage
current mapping will be presented.

1. Introduction

Life-time mapping techniques are by now routinely used by many producers of Si wafers and are finding their way to the
factory floor of "wafer fabs", i.e. factories which the manufacture integrated circuits /1-8/. It can be surmised that this
characterization technique was instrumental in improving wafer production techniques to a point where diffusion lengths of
several mm are common, thus not only improving wafer quality and device yields in general, but also opening the way to
novel etching techniques using very special electrochemical procedures /9, 10/.

The ELYMAT technique (for basic descriptions see /1, 2/) has been a strong contender among the methods employed,
despite the fact that some properties of the ubiquitous Si-electrolyte contact are not well understood, e.g. the degradation
of the interface after repeated measurements /11/. On the other side, the full potential of the ELYMAT technique /5-8/ has
not been exploited either.

This paper reports on some new developments of the technique. It will be shown that by using Lasers of different
penetration depths, a set of several measurements may be used to obtain depth information about diffusion lengths and to
generate maps of the surface recombination velocity on the front and back side of a wafer. A particularly useful new mode
(BSC: "both side mode") allows not only to overcome any problem with still existing surface recombination or degradation,
but offers unparalleled signal to noise ratios and reveals new structures in wafers which so far have been hidden in the
general noise level.

The diffusion length is not only a very important parameter in the integrated circuit industry, but the key parameter in any
kind of crystalline Si intended for solar cells. However, so far it has been difficult to transfer life time mapping techniques to
multicrystalline Silicon. By constructing a new cell and by optimizing measurement procedures, the successful
application of the ELYMAT technique to multicrystalline Si has now become possible, results (including Lock-in
techniques) will be presented.

The integral leakage current in the ELYMAT is known to provide important information about defects in the space charge
region. First results of a mapping technique for leakage currents using an simple electrochemical method will be reported.

2. Development and Results of Three-Dimensional Diffusion Length Mapping

With regard to gettering techniques it would be advantageous to know the depth dependence of the diffusion length: L(z).
Another parameter gaining in interest for submicron structures is the surface condition, e.g. the surface recombination
velocity S(x,y) /12/. A minimum requirement for 3D-mapping would be to measure S(x,y) at both surfaces of the wafer and
to determine the average L(x,y) for the front, center and rear part of the wafer separately. This implies knowledge of the
approximate thickness of these three regions, i.e. the quantities z1 and z2 which define the boundaries of the center
portion of the relevant wafer. In other words, at least seven independent quantities need to be determined at every point
(x,y) of the wafer, which demands at least seven independent measurements. In practice, it is advisable, if not unavoidable
to provide more than seven measurements, because the stability of the underlying model with respect to small variation in
the data may be ascertained only if redundant information is available.

Semiconductors - Script - Page 89

kap_3\advanced\t3_1_1.html

A
dv

an
ce

d



A minimum requirement for 3D mapping are measurements with two quite different penetration depths, i.e. Lasers with two
different wavelengths. This allows for a couple of more or less independent measurements, since every wavelength can be
used in four ways: Backside photo current (BPC) and frontside photo current (FPC) by illuminating the polished side of the
wafer, and the same two measurements "upside down", i.e. illuminating the backside of the wafer.

Measurements using wavelengths of 820nm and 1047nm (with corresponding penetration depths of 16µm and 500µm)
were duly undertaken and fitted to a model that contained the seven parameters given above. Results, however, were
unsatisfactory. What was needed was some kind of "reference" measurement with results not depending on all seven
parameters to be fitted and which minimized experimental scatter. The new "both side mode" provides exactly this
reference and shall be described first.

The basic idea is simple: If a deeply penetrating Laser is used, the electrolyte junctions on both sides of the wafer can be
biased to reverse conditions, front- and backside currents thus can be measured simultaneously. (This mode does not
work with small penetration depths because in this case the backside current is too small to be measured accurately).
The advantage of this mode is its absolute independence of S (mathematically S approaches infinity); this mode therefore
intrinsically overcomes any problems with surface conditions, including degradation phenomena. There is yet another
advantage of the both side mode, if one forms the relation between the two currents measured, i.e. IF/IB. By doing this,
noise causing factors cancel, e.g. the Laser intensity variations; the picture thus obtained offers the perfect reference for
any modelling endeavors. A minor disadvantage is the somewhat more complicated relation between the currents
measured and the diffusion length.

Fig. 1 demonstrates this. Fig. 1a,c compare the two standard modes of the ELYMAT in this particular case. As usual, the
FPC mode shows little structure whereas the BPC mode shows some features which would be interpreted as L-variations
in the bulk of the wafer. Independent FPC and BPC measurements using a deeply penetrating Laser show these features
in both modes as would be expected. The both side mode (Fig. 1e,f), however, is strikingly different:

Whereas the frontside current reproduces the features seen in the other measurements, the backside current picture
reveals completely different circular structures not seen in any other mode. This implies that the prominent features seen
in Fig, 1b-e are due to L-variations in the front part of the wafer whereas the rear "half" is differently structured.

This is verified by the calculated depth dependence demonstrated in Fig. 2. The structures, seen in Fig. 1b-e correspond
to the structures in Fig. 2a which is the calculated diffusion length for the front part of the wafer. The upper and lower part
of these maps are calculated from different sets of measurements, one with the back surface exposed to air and another
with the back surface passivated by HF. The difference in surface recombination is most obvious in the "upside down"
BPC-maps (Fig. 2e) and the reduction of the surface recombination by HF-passivation is revealed in the calculated S-map
(Fig. 2d). While the calculated diffusion length of the back part of the wafer is different for both measurements (probably
due to different injection levels) the calculated L of the central and front part (Fig. 2a,b) are totally independent of the
different boundary conditions, which is a good test for the validity of the fitting routine.

3. Measuring of Multicrystalline Silicon

Multicrystalline silicon (mc-Si, i.e. course-grained Si) becomes a propitious alternative to monocrystalline silicon in solar
cell fabrication although the mc-Si solar cells still have a lower efficiency than mono silicon solar cells. Because the
fabrication processes are identical for mc-Si and mono-Si solar cells, the reduction of efficiency is due to the as-grown
material and research is required to improve this material. Since the ELYMAT technique is a powerful tool for
monocrystalline silicon investigation, it was near at hand to apply this technique to mc-Si. Three problems, however, not
encountered with mono-Si had to be solved: Breakage, leakage currents and high series resistance.

Multicrystalline silicon is cut into squared wafers of about 300 µm thickness which are much more susceptible to
mechanical breaking than mono-Si. In the ELYMAT technique the critical moment for breakage is the closing of the
electrolytical double cell. The double cell has to be leak-proof and square, causing some additional problems in
comparison to mono-Si. The problems were solved by a fine tuning of mechanic and part of the cell and by using a flat
metal ring as middle contact instead of the pointed needle contacts of the standard ELYMAT.

The leakage current (of the Schottky-like electrolyte contact) is orders of magnitudes larger than in mono-Si, due to
defects in the space charge region (SCR) like grain boundaries, point defects and stacking faults. Thus the leakage
current Idark is of the same order or ever larger than the light generated minority current Iphoto. The sum of both currents
Ilight is measured by the ELYMAT technique. Calculating the difference

(1) 

yields a small signal to noise ratio for the photo current on mc-Si. Experiments show that the dark current exhibits not
only statistical fluctuations around an average value, but also sudden leaps between different dark current levels. Best
results for the photo current are achieved using a procedure which smoothes the statistical deviations around the actual
dark current level. Eq. (1) also implies that currents should be subtracted, which have been measured applying the same
bias across the space charge region USCR. The measurements, however, are performed by applying a constant bias Ubias
across the whole electrolytical double cell. Taking into account the series resistance UΩ of the system, USCR is a
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function of the current and the series resistance UΩ . The measured current values have to be corrected by a IR-
compensation using the equation

(2) 

and the above discussed statistical analysis of the dark current allows to measure diffusion lengths on mc-Si, where the
standard ELYMAT dark current treatment fails.

Because of the inhomogeneous diffusion length distribution of mc-Si a high spatial resolution is needed in order to get
satisfying information about the material structures (BPC resolution ≈ wafer thickness, FPC resolution ≈ influence area of
grain boundaries = diffusion length). For FPC measurements a standard step width of 1/6 mm is chosen, leading to maps
with 250000 pixels on an 85x85 mm area of the wafer. Measurements with higher spatial resolutions are possible with a
step width down to 50 µm.

The four ELYMAPs in Fig. 3 demonstrate the capability of the ELYMAT technique for mc-silicon wafers. They reveal
essential differences between the mc-Si material of four different manufacturers. Most obvious are the differing influences
of the grain boundaries on the diffusion lengths. While Fig. 3a indicates a gettering effect of grain boundaries and thus an
increased diffusion length, Fig. 3c shows a negligible influence of boundaries on L and Fig. 3d exhibits a high
recombination near the grain boundaries.

4. Lock-in Technique

The Lock-in technique (phase sensitive measurement of a modulated signal) is generally used to tackle problems with a
small signal to noise ratio. In the case of the ELYMAT technique this implies the measurement of photo currents
generated by modulated Laser light. The Lock-in technique offers conceptive advantage for wafers with high leakage
currents (e.g. mc-Si for solar cell application or non standard wafers like sand blasted silicon or highly doped material), in
the case of low Laser intensity (injection level spectroscopy or measurements in the low injection regime) or if the photo
current is very small (due to small diffusion length or in the IR-Bothside mode).

Applying a Lock-in technique for ELYMAT measurements, however, needs an understanding of the dynamical properties of
the silicon electrolyte contact. While the dynamics of the minority current flow within the silicon wafer is well described by
the diffusion equation, the dynamical response of the silicon electrolyte junction for modulated carrier concentration is not
well understood. Impedance spectroscopy (modulation of the bias across the junction) shows a limiting frequency of about
1 kHz due to several capacitors across the silicon electrolyte contact (e.g. space charge region, Helmholtz layer).
However, measurements in the FPC mode show no reduction of the Lock-in signal up to 10 kHz. So obviously the
relaxation times of the chemical reactions are smaller than the relaxation times for the diffusion and do not limit the
frequency for Lock-in measurements in the ELYMAT technique.

Despite the fact that there are some problems left concerning the quantitative analysis of BPC-ELYMAPs with Lock-in
technique, the first results are very promising. Fig. 4. shows the amplitude map of the Lock-in signal on mc-Si. In contrast
to the standard BPC-map (inset), the Lock-in signal shows the grain structure very clearly, although the wafer had
extremely high leakage current.

5. Leakage current mapping

One of the more challenging tasks in characterizing Si is the development of a method for leakage current mapping. As
Bergholz /6/ has shown, the integral leakage current of a wafer as measured by the ELYMAT may provide the most
sensitive information about beginning contamination in a production line. For solar cell Si, high leakage currents are tied to
reductions in the open-circuit voltage and are instrumental in reducing yields of solar cells.

Using an open electrolytical chamber with the silicon wafer as the bottom and filled with diluted HF, a scanned needle
(counter electrode) allows to measure a leakage current with sufficient spatial resolution, if all parameters are optimal. This
resolution depends on several parameters like needle geometry, HF concentration, the distance between needle and
silicon surface and the applied reversed bias. In Fig. 5 two leakage current maps are shown with extremely different
parameter sets. The current densities in Fig. 5b correspond to expected values from the measurement of the integral
leakage current. Due to the dull shape of the needle the spatial resolution is not high enough to investigate e.g. crystal
defects in mc-Si. This is possible by using a pointed spike (cf. Fig. 5a), but the measured current densities are far too
high to be a part of the normal integral leakage current. This effect is presently not well understood, but probably due to
the very inhomogenous electric field distribution which may induce local break through at defects in the SCR.

6. Conclusions

The utilization of new ELYMAT modes and measuring techniques offer new applications and increased measuring range,
e.g. for depth dependence of diffusion length and surface recombination velocity or injection level spectroscopy. Another
encouraging feature of the silicon electrolyte contact is the mapping of leakage currents, a material parameter which was
up to now only measurable as an integral value.
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Complications in Si Diffusion

 Unfinished Module. Possible Topics: :
  

Diffusion at High Doping Concentrations

  
Oxidation Enhanced Diffusion

  
Diffusion to Interfaces

  
Diffusion in the Presence of Second Phase Layers
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Junction Diodes With Small Dimensions

 
Lets first look at the basic situation as we had it before for large diodes:

We have an excess of minority carriers at the edge of the space charge region stemming form the majority carriers
injected into the other part of the junction.

The difference of the actual concentration np,ne,h(U) and the equilibrium concentration np,ne,h(U = 0) was given
by

∆ np, ne, h

edge

SCR

 = n p, ne, h(U) – n p, ne, h(U = 0)  =  np,ne,h(equ) ·




exp 
U

kT
  –  1





Neglecting the – 1 for forward conditions, we have the exceedingly simple general relation that the current flowing is
simply the diffusion current at the edge of the SCR following from the concentration gradient via Ficks 1st law. Lets
look at this a bit closer.

All that counts is the slope d∆nmin/d x of excess minority carrier concentration at the edge of the SCR. It gives
directly the minority carrier current at the edge of the SCR - and that is the only current we need to consider.
Since it is the only component of the current flowing at this point of the junction, (we neglected the other principal
terms for the forward condition), and since the current is constant throughout the junction, it simply is the current.
We don't have to worry about the other side of the junction or anything else.
The junction current j thus is

j  =  – q · D ·
d∆nmin

dx


edge

SCR

What about the current deeper in the Si? The slope is smaller and this must lead to a smaller current, too. Yes - but
now we have a majority carrier current, too. Whatever we loose due to recombination in the minority carrier current
component, we gain in the majority carrier current component and the total current stays constant.
In order to compute it, we need the slope and thus ∆nmin(x).

We always obtain ∆ nmin(x) as the solution of a diffusion problem, taking into account boundary conditions, e.g.
∆ nmin(x = 0), i.e. at the edge of the SCR, or the disappearance via recombination.
One boundary condition is clear: At the edge of the SCR the excess concentration will be at a fixed value
controlled by the applied potential as described above .
The second boundary condition is less clear. When we derived the relation

∆n(x)  = ∆ n0 · exp –
x

L

we also got the current

j min(x = 0)  = 
q · D

L
· ∆nmin(x = 0)
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we implicitly assumed that the size of the diode was infinite and that minority carriers simply disappear by
recombination.

For a small diode now, with x-dimensions much smaller than L, we have to reconsider the diffusion problem.

Assuming that after a distance dCon << L we now have an ohmic contact, we must ask what the excess
minority carrier density will be at x = dCon .
To make life easy, we now simply include in the definition of a "good" ohmic contact that minority carriers
reaching it will recombine instantaneously. While this is pretty much true for real contacts, it is not necessarily
obvious.
With this assumption we simply have as the important boundary condition for a small diode .

∆n(x = dCon)   =   0

This makes the solution to the diffusion problem very simple.

Since practically no recombination in the bulk will take place - all minorities die at the contact - the current
everywhere is simply the minority carrier current. This necessitates that

d∆ nmin

dx
 = const =  –  

∆nmin  edge SCR

dCon

The current then is

j min  =  j =  –  q · D ·
d∆nmin

dx


edge

SCR

  =  
q · D

dCon

 · ∆nmin (x = 0)

This is exactly the same formula as for the large diode - except that we now have dCon instead of L as the important
length scale of the device.

Moreover, minority carriers will now disappear by recombination at the contact after an average time τtrans called
transit time given by the time they need for traveling the distance dCon. Obviously, we have

dCon  = D · τtrans



1/2

in complete analogy to the relation between lifetime and diffusion length

Of course, this is still a rather simple description of a small diode. We only restricted one dimension, since we still
treated a one-dimensional case.

Real diodes might be small in more than one dimension, and all kinds of other complications can be imagined.
Nevertheless, the device dimensions and the transit time will in one form or other replace the bulk diffusion length
and lifetime.
The importance of this can not be overestimated. Device sizes in integrated circuits are in the sub-µm region and
critically influence device behavior.
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Solar Cell Primer

I've actually written a lot about solar cells in other hyperscripts. So take it from ther.

A whole chapter about the topic starts here

A version for people without a solid engineering / science background can be found here
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Exercise 3.1-1

How far off from perfection is a 1000 Ωcm Si crystal (at 300 K)? The resisitvity given is about the best (i.e. highest)
value that Si crystal growers can achieve on a routine base.

Consider what level of dopants corresponds to 1000 Ωcm? How far away from perfection (= truly intrinsic
behavior) are the crystal growers in terms of dopant concentration?
For that you must know the intrinsic carrier density and resistivity at room temperature in Ωcm. Calculate the
carrier density with the numbers and relations provided and find some suitable value for the mobility (from the
various illustrations in chapter 2).

This exercise not only demands that we generate numbers from some general formulas (which is not as easy as it
looks), but also gives an idea of how close we can get to the real numbers with our simple models.

   
Link to the solution
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Exercise 3.4.1

 
Lets consider a solar cell as an ideal pn-junction, for simplicities sake even without the current contributions from
the space charge region, but with a built in series resistance Rser and a shunt resistance Rshunt

We have the following equivalent circuit diagram (also defining what is meant by a shunt resistance). See also
the "Solar Cell Primer" in a basic module
 

The shunt resistance takes into account that the
huge area of the pn-junction of a solar cell might
have weak points (locally, e.g. at the edge) which
short-circuit the junction somewhat. These defects
are summarily described by a shunt resistor.
The constant current source mimics the current
generated in the junction by light. it simply defines
a current value Iphot (not to be mixed up with the
terminal current I) that is given by the light and
added (with a negative sign) to the junction current,
i.e. Ijunct = Idiode(U) – Iphot . Iphot thus simply
moves the total characteristics of the diode
downwards on the current scale.

 
Take the following schematic curve of I-U-characteristics as a reference and for the definition of the following
terms
 

The fill factor is the relation between the area of the
yellow rectangle to the pinkish area under the
characteristics.

 
Derive the complete current-voltage relationship.

Discuss qualitatively the influence of the two resistors with particular respect to:

The open-circuit voltage UOC

the short-circuit current ISC

The fill factor FF (the degree of "rectangularism" of the characteristics).

The efficiency η which is proportional to UOC, ISC , and FF, i.e.

 

η  = const · UOC · ISC · FF

 

Link to several exercises to solar cells, far exceeding this one, with the solutions.

There, look at chapter 8.
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Solution to Exercise 3.1.1

How far off from perfection is a 1000 Ωcm Si crystal (at 300 K)? The resisitvity given is about the best (i.e. highest)
value that Si crystal growers can achieve on a routine base.

Consider what level of dopants corresponds to 1000 Ωcm ? How far away from perfection (= truly intrinsic
behavior) are the crystal growers in terms of dopant concentration?
For that you must know the intrinsic carrier density and resistivity at room temperature in Ωcm. Calculate the
carrier density with the numbers and relations provided and find some suitable value for the mobility (from the
various illustrations in chapter 2).

This exercise not only demands that we generate numbers from some general formulas (which is not as easy as it
looks), but also gives an idea of how close we can get to the real numbers with our simple models.

 
First some numbers from the literature. According to "Semiconductor Materials", the intrinsic electrical conductivity of
Si at 300 K is
3.16 µS/cm. The NSM archive has rather similar numbers.

[S] = "Siemens" is a quaint German measure of conductivity, it is simply 1/Ω

This translates into a room temperature resistivity ρ of ρ = 1/σ = 316 000 Ωcm.

Alternatively , numbers for the intrinsic carrier density found in the sources given above or in arbitrary books are
somewhere in between 1.00 · 1010 cm– 3 or 1.38 · 1010 cm– 3.

Lets see if we can get numbers like this by calculation:

The carrier density is given by

ne  = Neeff · exp –  
EC  –  EF

kT 

Neeff  can be estimated from the free electron gas model in a fair approximation to

Neeff  = 2 ·




2 π m kT

h2





3/2

The dimension of this Neeff  is

[Neff]  = kg3/2 · eV3/2 · eV– 3 · s– 3  =  kg3/2 · eV– 3/2 · s– 3

That is a bit strange. Nevertheless it is right - try to do something about the kg! If you have problems of figuring
out how to get the proper dimension m– 3, use the link.

Inserting numbers (me = 9,109 · 10– 31 kg; k·T = 1/40 eV, h2 = (4,1356 · 10– 18)2 eV2s2 = 1,71 · 10– 35 eV2s2), we
obtain

Neff     = 4.59 · 1015 · T3/2 cm–3   
     = 2.384 · 1019 cm–3  

T = 300 K  
     = 2.384 · 1025   m–3  

The intrinsic carrier density thus is

ne  = 3.22 · 1019 cm– 3 · exp –  
EC  –  EF

kT 

  =  3.22 · 1019 cm– 3 · exp –  
0.55 eV

0.025 eV
 =  9 · 109cm– 3

This is just a little bit smaller than than the values given above; rather amazing, considering that the free electron
gas model is just a very simple approximation.
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Now we can see what kind of mobility μ we would get with ni = 1 · 1010 cm– 3 and a conductivity
σ = 3.16 µS/cm = 3.16 · 10– 6 Ω – 1cm– 1

We had the simple law σ = 2eµni (the factor two takes into account that we have holes and electrons), and thus
µ = σ/2e ni. This gives us

µ  = 
3.16 · 10– 6

2 · 1,602 · 10– 19 · 1 · 1010
Ω– 1 · cm– 1 · C– 1 · cm3

With [Ω]= [V/A] = [V · s/C] we have

µ  = 986 cm2 · s– 1 · V– 1

as an expected result. The unit [cm2 · V– 1 · s– 1] comes from the original definition of µ, which was (drift) velocity
divided by field strength.

Looking around a bit we find tabulated values of, e.g., 1400 cm2/Vs, which is just off by a factor of two - and that we
do not take seriously. So, what have we learned so far?

1. It is not so easy to really calculate the intrinsic properties. Getting the right order of magnitudes is already
pretty good. This is due, of course, to the fact that we have approximations a plenty, coupled with lots of
exponentials which are quite sensitive to small changes in the argument.
2. If we accept an intrinsic carrier concentration for one kind of carrier at room temperature around ni = 1 · 1010

cm–3, we would need a dopant concentration that is at least an order of magnitude smaller if we want to claim
truly intrinsic properties. That means we demand

Ndop  ≤ 1 · 10– 9 cm– 3  ≤  20 ppqt

Find out what ppqt means yourself.

The minimum doping concentration Nmin achievable (corresponding to the maximum resistivity ρmax of 1000
Ωcm or the minimum conductivity σmin of  1 · 10– 3 Ω– 1 · cm– 1) must be about

Nmin  = 
316 000

1000
  ≈  300 ni  =  3 · 1012 cm– 3

In the "master" curve for resistivity vs. doping, we find a value between 5 · 1012 cm– 3 and 1 · 1013 cm– 3, so
again we are close enough.

The final answer thus is: We are still at least a factor of 100 away from "perfection" with respect to unwanted doping.

And of course, we can not make any statement about the perfection achieved with respect to impurities that do
not influence the carrier concentrations
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Solution to Exercise 3.4.1
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Commercial Wafer Specifications

 
Here are the specification for Si wafers from one of the worlds top companies, Wacker Siltronic, as they appear in
the Internet in Nov. 2000.

Notice: Concentrations here are in cm– 3. The conversion to part per milion (ppm) is simple:orrelation

The atomic density of Si is 4.96 · 1022 cm– 3 or about 5 · 1022 cm– 3. This gives us

1 ppm  = 5 · 1016 cm– 3

The lowest concentration given in the table (look for it) is 5 · 1010 cm– 3; it corresponds to 1 ppt or 10– 12.

Surface concentrations [S] (given in cm– 2) are converted to volume concentrations [V] by

[S] =  = 
[V]

a

With a = lattice constant (= 0,5431 nm) or, more precise for single crystals, distance between the
crystallographic planes. With a approximately 0,5 nm = 5· 10– 8 cm, we have
[V] = 5 · 1016 cm–3 = 1 ppm corresponds to S = 108 cm– 2

Many specifications relate to the "flatness" of the wafers and the perfection of the surface; the abbreviations used
are
LLS (sometimes also abbreviated LPDs): Localized Light Scattering Defect; this relates to a detection
method of sub-µm size surface imperfections (resulting from bulk microdefects)
SFQR : Site flatness quality requirements (??): Whatever it means in detail - definitely a measure of flatness in a
region comparable to the size of a single chip.
(The rest: Who knows - to be included later)
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Life Time and Diffusion Length in Silicon

 
Here are some values in tabulated form taken from data given by Wacker Siltronic.

Note that the conversion between diffusion length L and lifetime τ involves the diffusion constant D via L = (Dτ)1/2

 which in turn contains the mobility µ via D = (kT/e) · µ.
The mobility µ, however, is a function of doping type and doping level. It comes as no surprise that the table must
distinguish between doping type and level - and the differences can amount to a factor of 3!

Diffusion-
length L [µm]

Carrier Lifetime [µs]

n-type p-type

10 Ωcm 100 Ωcm 10 Ωcm 100 Ωcm

100 8 8 3 3

200 34 32 13 11

300 76 72 30 24

400 135 129 54 44

500 211 201 84 68

700 414 394 165 133

1 000 845 804 336 2723

5 000 21 121 20 109 8393 6 798
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Solar Cells From Polycrystalline Cast Si

Here is a typical poly-Si slice and a solar cell made from a similar slice. The dimensions are 10 cm x 10 cm.

While the poly-Si slice is relatively fine grained (probably form about 1993), the solar cell (from about 1998)
shows coarser grain structures - demonstrating the progress made in casting technology

How good are polycrystalline solar cells? Not too bad, actually, but not as good as solar cells from very good
single crystals.

Below are four color coded maps showing essential parameters lod solar cells locally . These maps are not easy to
obtains; they result from a new technique, developed by a university of Kiel research group, called "CELLO" (short for
"Cell Local"). More details via the link. The parameters measured are:

"Current", meaning the maximum (short-circuit current) that can be drawn from a pixel.

"Voltage", meaning the voltage a pixel would produce if it would be an isolated cell by itself.

"Series resistance ", essentially meaning the ohmic resistance that would be found in an equivalent circuit for one
pixel
"Process defects", a lumped parameter that displays serious local problems like, e.g., locally leaking pn-
junctions.
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The progress made with multi-crystalline Si solar cells in comparison to competition is shown in the picture below
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Solar Cells - some Data

Here are some graphics that were compiled by Dr. Michael Powalla, Zentrum für Sonnenenergie- und �Wasserstoff-
Forschung (ZSW) Baden-Württemberg, �Industriestrasse 6, D-70565 Stuttgart; www.zsw-bw.de

First the world production of solar cells / modules im Megawatts. Interestingly, Japan surpassed Europe in 1997,
and the US in 1999. The total capacity produced in 2002 is about 500 MW, which nominally is about half of a
nuclear power plant.

In Germany, like in most other industrialized countries, progress depends on subsidies as shown below.

 

With increasing volume of solar cells produced (not just with increasing time fiddling around!), we learn how to operate
large scale production more efficiently and cheaply.

Costs come down on a learning curve, following rather general economic "laws".

The next picture shows how much € per Watt you must pay not over "linear" time, but over cumulated
"experience" measured in total output in (peak) megawatts.
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The overwhelming parameter of any solar cell is its conversion efficiency η. Silicon is still dominating the market, but
CuInSe2 (CIS) is now the major contender.

The following pictures compares efficiencies of CIS and amorphous Si ( α-Si) , and demonstrates that CIS has a
large potential, indeed.

"Yield" in this picture is the maximum efficiency for the technology listed achievable today. it is clear, but
unfortunate, that large-area technologies are always behind small area Lab-scale cells.

An often controversial issue is the "energy pay-back time" (EPBT), meaning the time you have to run your solar cell
just to generate the energy it took to make it.
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Obviously, EPBTs in excess of the expected life times of a solar cell or module (say 20 years) are idiotic (an
economist might oppose that statement, however). Equally obviously, the EPBT of any energy generating devices
are hard to assess, too:
How much energy does it take to produce a oil / coal burning powerplant? Including the energy needed to dig the
coal, transport it etc.? The energy needed to dismantle the thing eventually? The energy needed to repair the
damage from the emissions? The energy neede to keep, e.g. the city of Essen in Germany from being flooded for
the next several 100 years or foreever, since all the coal dug out under it caused it to sink below the ground water
level?
Anyway, as far as it can be done, the following graph shows the EPBT of solar cells. No matter how you look at
it: Harnessing solar energy with modern solar cells does make sense!
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Concentrated Piss

 
According to Jim Mayer, who worked at the crucial time at Bell Labs, the abbreviation "CP" really stands for
"concentrated piss" and not for "chemical polish" as is generally believed.

While Jim is a colorful person, not above pulling a few legs here and there, it may well be true!

The stuff does look like CP, smells bad, and is something you don't want to touch.

However, while real P is asolutely harmless (some people drink it for health reason), CP is absolutely deadly if
you drink it, and not much fun if you get it on your skin either.
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Radiation Equilibrium (in Everything Including Direct Semiconductors)

The analysis of the radiation equilibrium of a "black body" by Max Planck in 1900 i.e. exactly 100 years ago, lead to
the discovery of quantum mechanics; his law for the radiation density as a function of frequency is seen as the first
"quantum" law.

Max Planck had a hard time in believing his own result since he introduced the "quantum hypotheses" only as a
mathematical tool to play around with, and was surprised by its wild success in explaining facts hitherto not
understood.
His formal way of deriving at the black-body formula was quite involved. We can do much better, however,
because we do not have to discover quantum mechanics - we already know its basic features.

Essentially, we want to know the distribution of photon energies in a piece of semiconductor with a certain volume V
= L3 (for simplicity) which is in thermodynamical equilibrium at some temperature T. Don't confuse this L with the
diffusion length !

We solved a similar problem already when we looked at the distribution of electron energies in a piece of
semiconductor with a certain volume V = L3; i.e. when we went through the free electron gas model.
There is no reason why we should not follow the free electron gas model. We do not have to solve the
Schrödinger equation because we already know that photons are waves described by some exp (ik·r – ω t) with
ω = 2π ν
With that, we also know that the boundary conditions imposed by the finite crystal will only allow wave vectors
that fit into the crystal and form standing waves.

All we have to do then is to figure out the density of states at the energy hν, and the probability fph(hν) that these
states are occupied .

For the density of states we obtain exactly as in the free electron gas

Dph(k) · dk  = 
k2

π2
 · dk

and it has been taken into account that there are two polarization states per photon for each k .

Rewriting this for photon energies hν using k = 2πν ·nref /c with nref = refractive index of the semiconductor,
yields

Dph(hν)·dν  = 
8 · π · nref3 · (hν)2

h3 · c3
 · d(hν)

What is the probability that the states at some energy hν are occupied? For electrons - which are Fermions - this
was given by the Fermi-Dirac distribution which made sure that only one electron could occupy a given state.

Photons, however, are bosons and any number can share a given state. We therefore must resort to the Bose-
Einstein distribution given by

fph(hν)  = 
1

exp (hν/kT)  –  1

The density u ν  · dν of photons in the frequency interval ν, ν + dν (and, as always, per volume unit) is then given by
the product of the density of states and the probability of occupation, it is

uνdν  = 
π · nref3 · (hν)2

h3 · c3 · exp (hν/kT)  –  1 
 · d(hν)

This is Plancks formula for the number of photons per volume element in the energy interval hν, h ν  + d(hν) -
derived in just a few easy steps!

If you compare it with some text book formula, you may find a different version - different by a factor hν!
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This is because ususally it is not the photon density, but the energy density that is considered. The total energy
contained in a volume element between , hν + d(hν) is of course simply the number of photons with that energy
interval times their energy hν.
The energy density, if plotted, gives the well known spectral intensity curves that made Planck famous.

If we want to know how many photons we have with the band gap energy, we only have to insert hν = Eg to get the
answer.

But how about hν = Eg/2 or any other energy inside the band gap? After all, photons with these energies can not
be created in the semiconductor, while they have a certain density according to Plancks formula.
Well, as in the free electron gas model (which does not have band gaps after all) we have made approximations
that do not quite apply to the case of semiconductors. We have assumed a black body that absorbs and emits
at all frequencies - and this is not true for a "cool" semiconductor.
Essentially, we should enter the proper density of states for photons, but this is far beyond the scope of the
course.

On the other hand, we can make a detailed inspection of the the thermodynamic equilibrium just for the frequencies
corresponding to the band gap.

This was what Einstein contributed to this field (should have been his 3rd or 4th Nobelprize). It will yield
expressions for the "Einstein coefficents" crucial for Lasers and is demonstrated in another advanced module

 
Finally, a few words to the reason why Plancks radiation law was so seminal and what went wrong before it was
found.

Before Planck, others had considered radiation equilibrium - essentially people wanted to know why all hot bodies
"glowed" pretty much the same way, independent of their composition.
Based on a the "final" knowledge of electromagnetism as put down by Maxwell and a fully developed (classical)
theory of thermodynamics, Raleigh and Jeans showed - beyond a trace of doubt - that the energy density hν ·
uν · dν = E ν  · dν of electromagnetic radiation coming off a hot body must be

Eν · dν  = 
8 · π · nref3 · (hν)2

h3 · c3 · kT
 · d(hν )

Big problem! The energy density increases forever, and there should be tremendous amounts of UV and X-rays
coming out of a hot body. This is obviously not true, the term "ultraviolet catastrophe" was coined.

But Raleigh and Jeans made no mistake - something was fundamentally wrong with classical physics as a discipline.
The ultraviolet catastrophe, in fact, was one of the many stumbling boocks of classical physics at the close of the
19th century. Let's see what went wrong:

Essentially , Raleigh and Jeans' formula says:

Energy density Eν · dν  = density of states D(E ) · kT

This is nothing but the equipartition theorem that states that in a given system every energetic degree of
freedom is imbued with the same average energy kT . Since the energy fluctuations - with kT as the average
value - can have any value (just with different probabilities), all energies (= energy levels in modern parlor),
including the very large ones - can be reached and populated.
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The correct formula of Planck now essentially states that

Energy density Eνdν = density of states D(E) times hν times distribution function.

Energy now comes in quanta hν, and for finite temperatures there might not be any to populate the high-up
states.

Big difference! But not for low energies, where the Raleigh-Jeans law is a good approximation of Plancks law.
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Exciton Recombination Mechanisms in General

 
In chapter 5.1.3 several questions concerning exciton recombination mechanisms were asked:

Why GaP? How about other III-V compound semiconductors?

How about more exotic semiconductors? The II-VI system, organic semiconductors?

Anything similar for elemental semiconductors? Afer all, putting Ge into Si also changes the potential locally.

How about other defects, not necessarily isoelectronic ones? For example, ionized donors and acceptors also
attract and possibly "bind" freee electrons or holes, respectively?

Lets see about some answers. But first some more data to excitons in general

 

Excitons in Semiconductors

First lets look at the binding energy of free excitons in various semiconductors

The values for the effective masses, m* e and m*h (in units of the free electron mass) are included (compare with
the values given before to see how literature values can differ).
For completeness, we also give the numbers for εr and the nominal exciton Bohr radius rX at which the particles
would circle each other.
We have kTroom ≈ 25 meV; only exciton energies > 20 meV are usable; those are colored blue.

Material m *e m*h εr
Eb

[meV]
rX

[nm]

BN 0.752 0.38 5.1 131 1.1

GaN 0.20 0.80 9.3 25.2 3.1

GaAs 0.063 0.50 13.2 4.4 12.5

InP 0.079 0.60 12.6 6.0 9.5

GaSb 0.041 0.28 15.7 2.0 23.2

GaP     

InAs 0.024 0.41 15.2 1.3 35.5

InSb 0.014 0.42 17.3 0.6 67.5

ZnS 0.34 1.76 8.9 49.0 1.7

ZnO 0.28 0.59 7.8 42.5 2.2

ZnSe 0.16 0.78 7.1 35.9 2.8

CdS 0.21 0.68 9.4 24.7 3.1

ZnTe 0.12 0.6 8.7 18.0 4.6

CdSe 0.11 0.45 10.2 11.6 6.1

CdTe 0.096 0.63 10.2 10.9 6.5

HgTe 0.031 0.32 21.0 0.87 39.3

      

Si    7.5  

 

Semiconductors - Script - Page 115

kap_5\advanced\t5_1_3.html

A
dv

an
ce

d

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_3.html#_1
http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_3_1.html#_1


There is a definite correlation of the binding energy Eb with the bandgap as shown in the following figure. Since
GaP was not contained in the origial data, an indication of its probable position is included.
 

  

How About Bound Excitons in Other III-V Semiconductors?

There are a couple of other semiconductors where isoelectronic "dopant" atoms play some role:

Bi replacing P in InP                                                                                                 

N, or N-N pairs, replacing P or As in GaAs1-xPx

 

Anything Similar for Elemental Semiconductors?

Yes – at low temperatures!

In Si, the radiative part of the recombination proceeds to about 85 % via (free) excitons at 85 K, and at 20 K it is
close to 100 %.
Recombination due to excitons bound to As+ donors have been obseved, too. The binding energy is about 6.5
meV.
However, non-radiative recombination is still the major channel, so even at low tempertures Si is not a good
emitter of light.
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Photonic Crystals

The subject is covered in soem detal in another Hyperescript; use this link.
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Misfit Dislocations in Heterojunctions

 
Calculating the critical thickness of a layer with lattice constant a1 on top of a substrate with lattice constant a2 can
become rather involved, if all components contributing to the elastic energy are taken into account.

In particular, you may want to consider the anisotropy of the situation, the effect of a finite thickness of the top
layer, the real geometry with respect to the dislocations (their line energy depends on this and that, and they
may be split into partial dislocations).
Then, after arriving at a formula, you may chose to make all kinds of approximations.

In the backbone part of the script we had a simple formula (taken from a paper of the very well known scientist Sir
Peter Hirsch) which you can find in the link (together with some comments):

dcrit =  = 
b

8 · π · f  · (1 +  ν)
 ·  ln 

e · dcrit

r0

With b = Burgers vector of the dislocations; usually somewhat smaller than a lattice constant, f = misfit
parameter = (a1 - a2)/a1, ν = Poisson ration ≈ 0,4, e = really e = base of natural logarithms r0 = inner core radius
of the dislocation; again in the order of lattice constant.

Lets look at some other approaches

A formula taking into account most everything going back to J. W. Matthews and A.E. Blakeslee (1974) , who
pioneered this field of research, is

dcrit  = 
b · (1  –  ν ) · cos2Θ

8 · π · (1  +  ν) · f · cosλ
  · 





ln 
dcrit

b


  +  1





with Θ = angle between the dislocation line and its Burgers vector, λ = angle between the slip direction and that
line in the interface plane that is normal to the line of intersection between the slip plane and the interface.
For simple systems (Θ = 90o and λ = 0o), we have

dcrit  = 
b

8 · π · f  · (1 +  ν)
 · 





ln 


dcrit

r0


  + 1





And that is Sir Peters equation if you insert ln(e) for the 1 in the ln term.

While Sir Peter used the simple approximation

dcrit  ≈  
b

6f

the comparison with the (computer-generated) correct functional dependence suggests

dcrit  ≈  
b

9f

which is a bit different!

A plot of the full formula and the approximation looks like this:
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Similar curves are contained in the books of Mayer and Lau or Tu, Mayer and Feldmann; they supposedly use the
same equation but show rather different results.

Well, somewhere should be a mistake (maybe I made one?). In any case, it nicely demonstrates the point made
in the backbone section: Do not blindly believe a theory. In case of doubt, try it out.
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Compliant Substrates

 
The link will take you to the "Defects in Crystals" Hyperscript which contains in its "Advanced" part some information
to Compliant Substrates.

Semiconductors - Script - Page 120

kap_5\advanced\t5_3_4.html

A
dv

an
ce

d

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_8/advanced/t8_1_1.html


Potential Discontinuities and Dipole Layers

 
The Poisson equation in its simplest form reads

ε0ε r   ·  
d2V

dx2
 =  –  ρ(x)

Differentiating the potential V including possible discontinuities thus will gives us the charge distribution ρ( x). We
can do that very easily in a qualitative way as shown on the left hand side below.

Note that an infinitely sharp discontinuity will not be noticed in the dV/dx curves. The curves we get are identical
to the old curves that did not contain a discontinuity.

But infinitely sharp discontinuities, or singularities in general, mostly do not make sense in physics. All we have to do
therefore, is to redraw the potential with the discontinuity spread over a small distance (obviously in the order of the
atom size at the very minimum)

Differentiating graphically in a qualitative way now is easy, this is shown on the right hand side.

We now get a sharp "wiggle" in the charge distribution, corresponding to a dipole layer of charge right at the
interface.

Much can be learned from this. Here are a few suggestions for investigations of your own:

Look at the other type of discontinuity.

Look at the case of extremely heavily doped semiconductors

Now look at the junction between two different metals. Can you understand why such a junction is not "felt"
electronically?
Can you guess on how much charge is transferred from one material to the other one? On the field strength that
we encounter in these dipole layers?
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Exercise 5.1.2-1

  
Take the equation for a forwardly biased (symmetric) pn-junction (neglect the generation term from the space charge
region and the -  1 term) and then:

Calculate the areal density of injected carriers injected into the SCR for Si and GaAs from the current density for
some relevant values of Ndop, L and τ
Calculate the space density by using the matching values of the SCR width.

 
No solution given here. Do it yourself
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Energy Levels of Dopants in III-V Compound Semiconductors

  
Here are a few diagrams showing the energy levels of dopants and some other impurities in the band gap of III-V
compound semiconductors

For the time being, only GaAs data are presented.
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Motorola Break-Through?

 
Here is what I read in a major German newspaper in Sept. 2001

Got it? Well - neither did I. Lets take it as a comment on the state of general education in the new millennium

Well, here is the "real" thing - from Motorola press releases.

Now is that a break-through? Not too much real information in all the advertising hype. We will see in a few years.
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Motorola Inc. (ticker: MOT, exchange: New York Stock Exchange) News Release - 4-Sep-2001

Motorola Creates Revolutionary Semiconductor Materials; Potential to Transform
Economics of Communications and Semiconductor Industries

SCHAUMBURG, Ill., Sept. 4 /PRNewswire/ -- Motorola, Inc. (NYSE: MOT) announced today that Motorola Labs
scientists are the first to successfully combine the best properties of workhorse silicon technology with the
speed and optical capabilities of high-performance compound semiconductors that are known as the III-V
materials.

The discovery, which solves a problem that has been vexing the semiconductor industry for
nearly 30 years, opens the door to significantly less expensive optical communications, high-
frequency radio devices and high-speed microprocessor-based subsystems by potentially
eliminating the current cost barriers holding back many advanced applications. For
consumers, the technology should result in smarter electronic products that cost less,
perform better and have exciting new features. The technology will change the economics and
accelerate the development of new applications, such as broadband "fiber" cable to the home,
streaming video to cell phones and automotive collision avoidance systems.

Other potential markets include data storage, lasers for such consumer products as DVD
players, medical equipment, radar, automotive electronics, lighting, and photovoltaics. Until
now, there has been no way to combine light-emitting semiconductors with silicon integrated
circuits on a single chip, and the need to use discrete components has compromised the
cost, size, speed and efficiency of high-speed communications equipment and devices.

Specifically, the discovery impacts the semiconductor industry by:

Increasing substrate size, reducing substrate cost and processing costs for III-V
manufacturing

Integrating the superior electrical and optical performance of III-V semiconductors with
mature silicon technology to create a new industry based on Integrated Semiconductor
Circuits

Extending the life of silicon and existing capital investments

Improving cost effectiveness for higher performance applications such as optical
communications

Enabling larger scales of integration

"This is a tremendous achievement by our scientists and one that has the potential, when
fully commercialized, to transform the industry in a way that is similar to the transition from
discrete semiconductors to integrated circuits," said Dennis Roberson, senior vice president
and chief technology officer, Motorola, Inc.

"Motorola's announcement that they have successfully made GaAs transistors in a thin layer
of GaAs grown on a silicon wafer could go down in history as a major turning point for the
semiconductor industry," said Steve Cullen, director & principal analyst, Semiconductor
Research, Cahners In-Stat Group.

The Technology

The technology enables very thin layers of so-called III-V semiconductor materials (which
include gallium arsenide, indium phosphide, gallium nitride and other high performance / light-
emitting compounds) to be grown on a silicon substrate. Until now, this has been a virtually
impossible task due to fundamental material mis-match issues.

Specifically, the underlying crystalline structures of silicon and the various III-V compounds do
not match. As a result, previous industry attempts to combine them resulted in dislocations
or "cracks" in the material as the two mismatched structures struggled to bond. The key to
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solving the problem was introducing an intermediate layer of material between the silicon and
the III-V material. The solution was found in discovering exactly the right "recipe" for a material
that would easily bond with both silicon and GaAs, reducing the strain between the two target
materials in the process.

The idea was originally developed by Motorola Labs' scientist, Dr. Jamal Ramdani. Developing
and proving the exact recipe and process grew out of work done by a broad team of scientists
and engineers. Motorola Labs is now working on developing the optimum intermediate layer
for indium phosphide and other materials.

Another Industry First

Motorola Labs created the world's first 8" GaAs on silicon wafer and worked with epitaxial
wafer manufacturer IQE to create the world's first 12-inch GaAs on silicon wafers and a variety
of other wafer sizes. Motorola then made working power amplifiers from GaAs on silicon
wafers and successfully completed numerous wireless calls using those devices in several
phones over the past few months. In addition, a light-emitting device was created to
demonstrate the optical characteristics.

"GaAs on silicon is just the first step and has created a baseline technology for extending our
research to other materials systems," said Dr. Jim Prendergast, vice president and director,
Motorola Labs, Physical Sciences Research Lab. "One of our next goals is to complete the
task of growing indium phosphide on silicon. This technology should support chip clock
speeds of more than 70GHz and long-wavelength lasers that are critical to fiber-optic
communications."

Changing the Economics of Optical Communications

Until now, the industry has been dependent on costly gallium arsenide and indium phosphide
wafers for optical and high performance applications. Because of their brittle nature, no one
has previously been able to create commercial GaAs wafers larger than 6 inches or InP
wafers larger than 4 inches. Scientists have also been unable to combine light-emitting
semiconductors with silicon integrated circuits on a single chip.

"More than 90 percent of the existing fiber optic cable is still unused and underutilized," said
Bob Merritt, vice president, Semico Research Corporation. "This technology could be the
switch that eventually turns on those communications channels."

Plans to Commercialize

Motorola has filed more than 270 patents on inventions related to this new technology and the
company intends to broadly license the technology. Padmasree Warrior, a Motorola corporate
vice president has been selected to lead the commercialization effort. Warrior has worked in
all aspects of the semiconductor segment, including device technology, research and
development, process engineering, manufacturing and pilot line operations.

Technical Presentations

The technology breakthrough will be introduced to the scientific community at the following
conferences:

Dr. Ravi Droopad, Principal Staff Scientist, Motorola Labs, will present at the International
Workshop on Device Technology in Porto Alegre, Brazil, on September 4, 2001.

William Ooms, Director of Materials, Device, and Energy Research within Motorola Labs will
present at the Materials Research Society Workshop in Chattanooga, Tennessee on
September 11, 2001.

About Motorola

Motorola, Inc. (NYSE: MOT) is a global leader in providing integrated communications and
embedded electronic solutions. Sales in 2000 were $37.6 billion. Motorola Labs serves as the
advanced research arm of the company, focusing on leading edge technologies for future
products and product enhancements. Motorola also actively licenses technologies developed
in the Labs to external customers.

Business Risks: Statements about the impact of this new technology are forward-looking and
are based on current expectations that involve risk and uncertainties. Factors that could
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cause actual results to differ materially from those in the forward-looking statements include:
market acceptance of the technology; success in extending the technology to other
materials; unanticipated technological delays; competing technologies; the cost of
manufacturing the technology; and other factors found in Motorola's filings with the Securities
and Exchange Commission.

Photos, artwork, b-roll and additional background material is available at the Motorola Media
Center at: http://www.motorola.com/mediacenter/ SOURCE Motorola, Inc.

CONTACT: Anne Stuessy of Motorola, +1-847-538-6192, or anne.stuessy@motorola.com; or
Amy Smolensky of Hill and Knowlton, +1-312-475-5985, or asmolens@hillandknowlton.com,
for Motorola/

   

  
Got it? Well, take it as an example of saying much without releasing any real information. Here is the real story from

the Semiconductor International, 10/1/2001
GaAs-on-Silicon, Finally!

Peter Singer, Editor-in-Chief -- Semiconductor International, 10/1/2001

Up until the late 1980s, GaAs-on-silicon was the focus of some intensive research at universities, wafer suppliers,
MOCVD companies and research labs of many IC suppliers. The hope was that it would provide a platform whereby
III-V optical devices and silicon digital technology could be combined on the same chip. But it really never proved
viable, due to problems with the mismatch between the silicon and GaAs crystalline lattice, which caused a
significant number of dislocation defects at the interface of the two materials, extending into the active area of the
devices.

Suddenly, those problems appear to have been solved thanks to new research at Motorola (Schaumburg, Ill.). While
working with strontium titanate, a material with a high dielectric constant (high k) that has applications as a gate
dielectric and for DRAM capacitors, researchers noted that the lattice size of the material was such that it might
make a good buffer material. "It turns out that strontium titanate has a lattice which is about 2% mismatched to
silicon, but it's about halfway between silicon and gallium arsenide," said Jim Prendergast, vice president and
director, Motorola Labs, Physical Sciences Research Lab. "The other interesting fact that we found out when we're
growing this crystalline strontium titanate on silicon was that we're also getting an interface layer between the STO
and the silicon, which was an amorphous silicon dioxide.

Interesting! Epitaxial growth despite an amorphous layer between substrate and film. Has been observed before,
however: I recount a paper growing something epitaxially on SiC with an amorphous layer between substrate and film,
too. (around 1984)

"Amorphous silicon dioxide can act as a compliant layer. We believe that there is some level of compliance here. In
fact, when we looked at the crystalline structure of the strontium titanate, it was completely relaxed. Based on that,
one of our researchers, Dr. Jamal Ramdani, had the excellent idea of growing additional layers on top of the
strontium titanate. His first try was to look at GaAs. He knew the lattice match would be pretty good to strontium
titanate and, in fact, the second time he attempted to grow it, it was indeed successful." That was a little less than
two years ago.

In other words: This was unother one of the not-looked-for major discoveries!

"We've had just a crash program now here in Motorola Labs where we've been perfecting that technology, and we
believe that we're at a point where we do have very good defect densities and are actually showing rf performance
that's essentially equivalent to GaAs-on-GaAs," Prendergast added. Motorola Labs is now working on developing the
optimum intermediate layer for indium phosphide and other materials.

Until now, the industry has been dependent on costly GaAs and InP wafers for optical and high-performance
applications. Because of their brittle nature, no one has previously been able to create commercial GaAs wafers
larger than 6 in. or InP wafers larger than 4 in. "We believe that GaAs-on-silicon starting material will be a lot less
expensive than the equivalent GaAs-on-GaAs, even for the same wafer size," Prendergast said. "So a 6 in. GaAs-on-
silicon would be significantly lower in production costs than an equivalent 6 in. GaAs-on-GaAs. You can imagine
there would be even greater cost advantages in going to 8 in. or even 12 in." Motorola Labs created the world's first 8
in. GaAs-on-silicon wafer and worked with epitaxial wafer manufacturer IQE to create the world's first 12 in. GaAs-on-
silicon wafers and a variety of other wafer sizes.

Motorola's announcement that it has successfully made GaAs transistors in a thin layer of GaAs grown on a silicon
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wafer could go down in history as a major turning point for the semiconductor industry, said Steve Cullen, director
and principal analyst, semiconductor research, Cahners In-Stat Group .

© Copyright 1994-2001 motorola, Inc. All Rights Reserved.
Home | Terms of Use | Privacy Practices | Contact Us
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History of the Laser

Lasers are one big success story – and an embodiment of Feynmans famous sentence:

"There are certain situations in which the peculiarities of quantum mechanics can come out in a special way on a
large scale."
It is not necessary to to emphasize how important lasers are to all of us – to the scientist, the patient in a
hospital, the consumer listening to her discs, the supermarket cashier, the geometer – and just about everybody
else. It should be quite clear.
It is, however, quite necessary to emphasize that lasers – and, of course, all of solid state electronics – are
purely quantum mechanical devices, because this is simply not known to the "people in the street" (including
those in suits; and this says something about the state of general eduction in this country).

Here are a few milestones in the development of the laser.

The first major date is 1916, when Albert Einstein introduced the concept of stimulated emission.

The first experimental verification of stimulated emission was obtained in 1928 (by W. R. Ladenburg).

It took till 1953 to experimentally demonstrate not only stimulated emission but amplification of radiation. This was
achieved by Gordon, Zeiger and Townes.

The researchers used the two lowest vibrational energy levels of ammonia molecules and obtained a very narrow
emission line at 12.6 mm, i.e., in the "micro"wave region.
This is where the name "maser" comes from.

Follow-up on the "maser" finally led to the 1964 Nobel prize in physics being shared between Townes and, for
their contributions to the underlying theory, the Russians Basov and Prokhorov .

Meanwhile, however, Maiman produced the first optical maser, as the laser was originally called in 1960.

The light came from Cr3+ ions fixed in an Al2 O3 crystal – in other words, a ruby – at a wavelength of 694.3 nm.

Pumping took place with an intense light source, and the laser only emitted a short pulse.

The first semiconductor lasers started working in 1962: Three different research groups achieved lasing ##from
different devices##.

The light came ### at a wavelength of 694.3 nm.

Pumping took place ###.
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Detailed Derivation of the Inversion Condition

As in the "short-cut" derivation of the inversion condition, we look at the number of stimulated emission and
fundamental absorption processes per time and volume unit (i.e., the rate density). We use the same symbols,
however, with some additional indices if necessary. We have:

Rfa(E1, E2) = rate for fundamental absorption of a photon by an electron sitting in the valence band in the
energy interval defined by E1 and E1 + ∆E1 that is then moved "up" into the conduction band to the energy
interval E2, E2 + ∆E 2 and under the condition that the wave vector of the electron (in a reduced band diagram)
does not change.
R se(E1, E2) = rate for stimulated emission of a photon by a photon from an electron sitting in the conduction
band in the energy interval defined by E2 and E2 + ∆E 2 that is then moved "down" into the valence band to the
energy interval E1, E1 + ∆E1 and under the condition that the wave vector of the electron (in a reduced band
diagram) does not change.

We now define the rates relative to an energy interval because we will see that the photon does not need to have
exactly the energy h · ν = E2 – E1 to induce transitions – this follows from Heisenberg's uncertainty relations.

As before, the rates must be proportional to the number of electrons available for the interaction with a photon and
the number of empty states available for the electrons to occupy after the interaction

At the respective energies, the density in some small energy interval ∆ E (ideally being zero) around some energy
value E 2 or E1 in the conduction or valence band, is always given by the density of states at the chosen energy
times probability of occupations times small energy interval, i.e.

DC(E2) · ∆E · [f(E2, EFe, T)]  =  
(differential) density of electrons close to the
conduction band edge in the energy interval
E2, E2 + ∆E

   

D V(E1) · ∆E · [1 – f(E1, EFh, T)]  =  
(differential) density of holes close to the
valence band edge in the energy interval
E1 , E1 + ∆E

The density of states DC, V are functions of E2, 1, of course.

Since we use the quasi Fermi energies, we have to use two different Fermi distributions for the two quasi Fermi
energies; we have f(E, EF e, T) and f(E, E Fh , T)

However, for a full appreciation of the symmetries in the problem, it may be advantageous to define alltogether
four Fermi distributions, two of which we then will really use as already pointed out when quasi Fermi energies
were introduced.
Besides fe(E, EFe, T), giving the direct probability of finding electrons in the conduction band, we simply define
the direct probability for finding holes in the valence band as f h(E, EFh, T) = 1 – fe(E , EF h, T). Watch out for the
indizes h and e in this!
Next we simply agree to use only fh if we discuss what is going on in the valence band, and only fe for the
conduction band.

Using this convention, the equations from above, augmented by two more equations to account for all densities, we
have

DC (E2 ) · ∆E · [fe( E 2, EFe, T)]  =  
(differential) density of electrons close to the
conduction band edge in the energy interval
E2, E2 + ∆E

   

D V(E 1) · ∆E · fh (E1, EF h, T)  =  
(differential) density of holes close to the
valence band edge in the energy interval
E1, E1 + ∆E

   

DV(E 1) · ∆E · [1 – fh(E1, EFh, T)]
(differential) density of electrons close to the
valence band edge in the energy interval
E1, E1 + ∆E

   

D C(E2) · ∆E · [1 – fe(E2, EFe, T)]
(differential) density of empty states close to the
conduction band edge in the energy interval
E2, E2 + ∆E
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This should be clear, simply recall that fh (E1, EFh, T) is the direct probability of finding holes in E1∆E1 ; we
therefore must take (1 – fh(E1 , E Fh, T) for the probability of finding electrons if we only use fh(E1, EFh, T) in the
valence band.

This allows us to formulate the electron and hole density part of the rates R we are trying to calculate.

These rates are also proportional to the number of photons with the energy hν ≈ E2 – E1, i.e., to u(ν ). We use
"≈" instead of "=", because one of the goals of this module is to see how far off the photon energy could be from
the band gap energy while still giving some effects.
Using the proportionality constants Afa and Ase, we now can formulate the same equations as we had before,
but in a more precise and general way (omitting the temperature to save space):

Rfa (E1, E2)  = Afa

  · D V(E1) · ∆E1 · [1 – fh(E1 , EFh)] 

  ·  DC(E2) · ∆E 2 · [1 – fe( E2, EFe) 
  ·  u(ν ) 

Rse(E1 , E2)  = Ase

  · D V(E1) · ∆E1 ·  fh(E1, EFh) 

  ·  DC(E2) · ∆E 2 · fe(E2 , EFe) 
  ·  u(ν ) 

The terms in the large brackets are (from left to right)

The proportionality coefficients or Einstein coefficients
The density of unoccupied states (= density of holes) available for the electrons at the end point of the
transition.
The density of electrons present for interactions with the photons at the energy interval considered, i.e. the
occupied states.
The density of photons available for the processes considered

This kind of relation for a transition probability of a particle from one state to another state is an example of an
universal principle known as "Fermi's golden rule". While it is very easy to grasp the way it is presented here, it
is actually a bit strange: What the electrons do depends on the density of unoccupied energy levels somewhere
and sometime else. How do the electrons "know" if there is some free space "down there"? More to that in
another advanced module.

Einstein showed that Ase = Afa = A = Einstein coefficient for fundamental absorption under all circumstances. We
will derive this relation in another modul – it is not so easy (Einstein was a great physicist indeed).

We will now calculate Rnetse, the net rate of stimulated emission, which is

Rnetse  = Rse  –  Rfa

Using the formula from above and gong back to the regular Fermi distribution, we obtain

Rnetse  = A · u(ν) · DC (E2) · DV(E1) · 
 f(E 2, EFe) + f(E1, EFh )  – 1 

  · ∆E1 · ∆E2

We now must look more closely at the ∆ E1, 2 terms and consider their physical significance.

The key point is that we are looking at electron (or hole) states that are very short lived. Consider the electron
that was knocked into the state with the energy E2 in the conduction band (or the hole state left at E 1). They will
disappear very quickly (within a time given by the dielectric relaxation time of the system, which is around 10–12 s
for typical optoelectronic semiconductors).
In other words, the electron in the conduction band will very quickly thermalize by interactions with phonons and
settle at energies close to E C.

Heisenberg's uncertainty principle for energies states that

∆E2 · ∆τ  ≥  h

This means that for electrons occupying some state E2 for some small average (= uncertain individual) time ∆τ,
we have an uncertainty in the precise value of the energy. It is not given precisely, but only within some
uncertainty ∆ E = h/∆τ.
 
More precisely, things can happen even if the energy available is not
precisely what is needed - all the it is required that it happens so fast
(small ∆τ) that the difference in energy is covered by the resulting
uncertainty. In other words, there is a certain likelihood that transitions may

 

Semiconductors - Script - Page 131

kap_6\advanced\t6_1_2.html

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_6/backbone/r6_1_1.html#_4
http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_3_4.html#dielectric relaxation time


More precisely, things can happen even if the energy available is not
precisely what is needed - all the it is required that it happens so fast
(small ∆τ) that the difference in energy is covered by the resulting
uncertainty. In other words, there is a certain likelihood that transitions may
occur for not exactly matching energies, too

 

In yet other words: A photon with the precise energy of h · ν may create
electron–hole pairs with energies of h · ν ± ∆E with some probability that
depends on ∆E and ∆τ .
This means that there is a certain probability distribution L(E 2, E1, τ C, τ V)
for obtaining a transition even if the photon does not have the exactly right
energy hν = E2 – E1 , but deviates by some ∆E.
We cannot calculate that distribution at this point, but we can be pretty
sure that it must be something as shown in the picture on the right.
In total, we have the possibility that photons somewhat off the proper
energy still may induce a transition. The probability, however, will go down
rapidly as the deviation ∆E is increased or τ increases.
The reverse then is also true: Photons with only one well defined energy hν
will cause transitions not only between energy states E2 – E1 = hν, but
also between states with an energy (E2 – E1) ± ∆E and the probability for
some ∆ E is given by the L curve.
  

The total transition rates of electrons in response to photons with some density u(ν) at the frequency ν is thus
obtained by integrating over all possible transitions weighted by the probability function L(hν). If we include this into
the formula for the net emission rate we obtain

 

Rnetse  = ⌠⌡
⌠
⌡A · u(ν) ·DC(E2) · DV( E1) · 

 f(E2, EFe) + f(E1, EFh)  – 1 
 · L(E 2, E1, τC, τ V ) · dE1 · dE2

 
and we have to integrate over the valence and conduction band.

Now we reached the end of our tether. Because we neither know L(E2, E1 , τC, τV), nor could we easily do the
integration if we would know it (it must be, after all, some bell-shaped kind of probability distribution).

We thus introduce the first approximation into our so far rather rigid derivations: We assume a δ-function for L; in
other words, we neglect the energy uncertainties and allow only transitions with identical energies to occur. This
does not mean that the energy levels are now fixed, only that the energy level you reach from some level is fixed.

One integration now becomes trivial. We integrate over the conduction band, rewrite E2 as E1 + hν (we can do that
now because we now have a sharp level in the conduction band), and obtain

 

Rnetse  = A · u(ν) · ⌠⌡DC(E1 +  hν) · DV(E1) · 
 f(E 1 +  hν, EFe) + f(E1, EFh)  –  1 

 · dE1

 

Far simpler, but his equation still contains an integration over the density of states, which is not so easy to do even in
the simplest approximations.

In other words: We still allow transitions from different energy states to the corresponding states hν larger in
energy (and always at the same wave vector k ). So we seem to be stuck again.

Well, not completely so, because the last equation also contains the inversion condition in a slightly veiled form. Let's
see how this can be verified:

For inversion we defined that Rse ≥ Rfa , and that implies that Rnet = Rse – Rfa must be zero or positive.

Since A, u(ν), and DC, V are always positive, R net ≥ 0 only applies if

f(E1 + hν, EFe)  +  f(E1, EFh)  –  1  ≥ 0
   

f(E1  +  hν, EF e)  ≥  1  –  f(E1, EFh)

This is a condition for any combination of two energy levels from the valence and conduction band with energy
difference hν.
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Let's see what that means by looking at a special combination of energies: E1 = EV, E2 = EC, hν = Eg. Then,
f(E1 + hν, EFe) = f(E2, EFe) is the probability that we find electrons at the conduction band edge, and 1 – f(E1,
EF h) = 1 – f(EV, EFh) is the probability that the valence band edge states are not occupied by holes and
therefore occupied by electrons.
The inversion condition as expressed in the equation above then states that stimulated emission only surpasses
fundamental absorption if it is more likely to find an electron at the conduction band edge than at the valence
band edge.
This statement applies to any pair of energies. Inversion occurs as soon as it is more likely to find an electron at
some energy in the conduction band, than at this energy minus hν in the valence band.

Spelling out the Fermi distribution functions,

f(E1 + hν, EFe)  =  

1 

  
1 + exp 

(E1 + hν) – EFe

kT 

  

and so on, we find once more as the inversion condition

E Fe  –  EFh  ≥ hν

What did we gain by this procedure? Quite a lot, because we now know where we cut corners. We know how we can
calculate rates for stimulated emission and fundamental absorption with sufficient precision – all we have to do is
some numerical work.

But actually, what we really want to do is to make a laser diode and not to calculate emission rates. Making an
operating Laser diode entails that we have some specific volume where we need to have inversion conditions.
Then we send some photons into this volume to start stimulated emission, and, since this would deplete the
electron population in the conduction band, we also inject electrons into the conduction band (and, of course,
holes in the valence band), with the aim of achieving some steady state in the output of light produced by
stimulated emission!
In other words, we must look at the dynamics of inversion, at how all quantities involved change with time. And
this can be done by working with the formulas derived here – but in a different module.
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Fermi's Golden Rule and Puzzles of Quantum Theory

Fermi's golden rule in a qualitative form says that the transition probability for particles from some state 1 to some
state 2 depends on the density of occupied states 1 times the density of unoccupied states 2. This is actually a bit
strange. Let's see why:

Consider yourself up on the jumping board in a very crowded swimming pool (state 1). Some "friends" are
wiggling the board pretty hard, so you are in danger of falling off and to plunge in the pool below (state 2).
You will try hard not to fall off, i.e., not to make the transition from 1 to 2 if there is no free space in the water,
while you let yourself shake off if there is a hole in the water, i.e., an unoccupied state 2.

But in such a case you have eyes to see and a free will to decide what you are going to do (or at least want to do).
Now imagine the same situation for wood spheres swimming in the water and one sphere in a shallow bowl above,
which is jiggled (by some form of energy).

The wooden sphere will fall over the edge with a probability that only depends on its mass, the shape of the bowl,
the amount of jiggling – whatever – but certainly not on anything down in the water.
For the probability of the transition, it does not matter at all if there is room in the pool, if there are spheres there
at all, or how the sphere got out of the pool and in the bowl.

For classical particles, Fermi's golden rule thus does not apply. It is deeply rooted in quantum mechanics and just
another expression of the "QED – The Strange Theory of Light and Matter" (to quote the title of a well-known [and
highly recommended] book by Richard Feynman).
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Gain Coefficient

 
The gain coefficient describes how the density of photons, u ν(z), changes as they propagate along the z-direction.
The definition implicitly used before was

uν(z)

dz
 = gν · uν(z)

The physical process for the change of the photon density was stimulated emission (increasing the density) and
fundamental absorption (decreasing the density). Both effects we combined into a net emission rate which
expresses the balance of emission or absorption rates taking place the photons propagate in z direction:

Rnet se  = Rse   –  Rfa  =  Rnetse(z )  =  R(z)

For the individual emission rates Rse and Rfa we had simplified equations, however, not expressively as a function of
z:

Rfa = Afa · Neff · uν · ∆ν · [1 - fh in V(E v, EFh, T)] · [1  –  fe in C(E c, EFe , T)]
  

Rse = Ase · Neff · uν · ∆ν · [fe in C(Ec, EFe, T)] · [fh in V(E v, EFh, T)]

From a somewhat more detailed look at the inversion condition in an advanced module, using e.g. the proper density
of states instead of effective densities, we obtained "better" equations which we are now going to use:

 Rfa(EV, E C) = 
Afa


  · D V(E v) · ∆E v · [1  –  f(E v , EFh)] 

 · DC(E c) · ∆E c · [1  –  f(E c, EFe)] 
 · u(ν ) 

 R se(Ec, E v) = 
Ase


  · D V(E v) · ∆E v · [1  –  f(E v , EFh)] 

 · DC(E c) · ∆E c · f(E c, EFe) 
 · u( ν ) 

   
Summing up (= integration) for all possible transitions gives for Rnet

Rnet  =  A · u ν  · ⌠⌡
EC

[ DC(E v + hν) · DV( E v)] · [f(Ev + hν, EF e)  +   f(E v, EFh)  –  1] · dEv

The change in the density of the photons is now directly given by

∂uν (z,t)

∂t
 = Rnet

which we can write as

∂u ν (z,t)

∂t
 = 

∂ uν(z,t)

∂ z
  ·  

∂z 

∂t
  =  Rnet

We use the partial derivative signs ∂ to make clear that we have more than one variable.

This may look at bit strange. What does it mean?
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It means that the density of a bunch of photons that are contained in some volume element at some point z is
given by the product of the change in density along z that they experience in their travel, times the rate with which
they change their position and this means that

∂z

∂t
 = vg  = group velocity

of the photons .

Look at a simple analogy:

When you and your friends travel as a group from Kiel to Munich, starting with some amount of money mKiel ,
which will cerainly change by the time you reach Munich, you have a certain value of the money gradient dm/dl
along the length l of your path.
Your rate of spending, dm/dt , depends on how much you spent along the way ( = dm/dl ) times how fast you
spent it ( = dl/dt),

dm

dt
 = 

dm

dl
  ·  

dl

dt

and dl/dt is just the velocity with which you move.

For {∂uν(z,t)/∂z} · {∂z/∂t} we already have the independent expression that defined the gain coefficient from above,
and we also have the lengthy expression for Rnet. Inserting it yields

Rnet = gν (z) · vg · u ν  = A · uν
⌠
⌡
EC


DC(E v  +  hν) · DV(E v)] 

 ·  f(E v  +  hν, EFe)  +  f(E v, EFh )  –  1 
 · dE v

from which we obtain the final formula

g ν  = 
A

vg

  ·  ⌠⌡
EC


DC(E   +  hν ) · DV(E V) 

  ·   f(Ev  +  hν, EF e)  +  f(E v, EFh)  –  1 
 · dE v  

This looks complicated (actually, it is complicated) - but it is a clear recipe for calculating g.

Essentially, the integral as a function of the frequency ν scales with the density of electrons in the conduction
band and the density of holes in the valence band exactly hν electron volts below. Both values increase if the
Quasi Fermi energies move deeper into the bands.
The integral runs over the valence band, summing up all energy couples between the valence band and the
conduction band that are separated by hν ; it will thus be a function of ν. For some ν , depending on the carrier
concentration, it will have a maximum. This is easy to see if we consider the distribution of electrons (or holes) in
the conduction (or valence) band.
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In this example for the conduction band, the quasi Fermi energy is somewhere above the band edge. The product
of the Fermi distribution with the density of states (here as the standard parabola from the free electron gas
approximation) always will give a pronounced maximum somewhere between E C and EeF. The same thing
happens for the holes in the valence band.
The energy difference between the two maxima will be the energy or frequency where gν is largest. If we increase
the carrier concentrations, i.e. if we move the quasi Fermi energies deeper into the bands, gν will increase too,
and the maximum value shifts to somewhat larger energies.

All things considered, we now have:

A good idea of how to calculate gν and what we need to know for the task.

A good idea of the general behavior of gν and what we have to do in a qualitative way to change its value to what
we want.
A pretty good grasp why gν looks the way we have drawn it - without justification - in a backbone module.
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Einstein Coefficients

Again, we come back to the question: Do (direct) semiconductors glow in the dark?

The answer was yes – but only to the extent that all (black) bodies glow in the dark, following Plancks famous
formula.
Here we will look at this question in a different way that also will allow us to obtain the Einstein coefficients.

Instead of looking at the equilibrium distribution of all kinds of radiation in a "black body", we now consider only the
frequencies prevalent in direct semiconductors, i.e. radiation with hν ≈ Eg. We then have the three basic processes
between electrons (and holes) and radiation:
Fundamental absorption

The rate R fa with which fundamental absorption takes place was given by (we use the simple version)

 Rfa  = Afa · Neff2 · u(ν) · ∆ ν · 1  –  fh in V (E v, EFh, T) 
  · 1  –  fe in C (E c, EFe, T) 



Since we now consider thermal equilibrium, we have EF h = EF e = EF. We also can replace 1  –  fh in V(Ev, EFh,
T) by f(E, EF, T) because the probability of not finding a hole at E v = E is equal to the probability of finding an
electron; and fh in V(E v, EFh, T) can be written as by 1  –  f(E, EF, T). Moreover, wherever we have fe in C , we
simply substitute by f(E + hν, EF,T ). This yields

 Rfa  = Afa · Neff2 · u(ν) · ∆ν ·  f (E, EF, T) 
  · 1  – f (E  +  hν, EF, T) 



Stimulated emission.

The rate R se for stimulated emission (in the form rewritten for equilibrium exactly as above) was

Rse  = Ase · Neff 2 · u(ν) · ∆ν ·  f (E  +  h ν  , EF, T) 
  · 1  –  f (E , EF, T) 



Spontaneous emission.

We have not yet considered the rate R sp for spontaneous emission in the same formalism as the other two, but
that is easy now. We have

Rsp  = Bsp·Neff2 · 
 f(E + hν, EF, T) 

  ·  1 – f(E, EF, T) 


Combining everything gives a surprisingly simple equation for Rsp :

Rsp  = 
Rse · Bsp

Ase · u( ν ) · ∆ν

Thermodynamic equilibrium now demands that the number of photons produced must be equal to the number of
photons absorbed. In other words, the sum of the emission rates must equal the absorption rate, or

Rse + Rsp  = Rfa

Inserting the equation for Rsp yields
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Rfa  –  R se  = 
Rse · Bsp

Ase · u(ν) · ∆ν
   

     
Rfa

Rse

  =
Bsp

Ase · u( ν  ) · ∆ ν
   

From this we obtain

u(ν ) · ∆ν  =  




Ase · Rfa

Bsp · Rse

  – 
Ase

Bsp





–1

All we have to do now is to insert all the lengthy equations we derived for the rates. The math required for that is easy,
but tedious.

For ease of writing we now drop all indices and functionalities which are not desparately needed, insert the
equations for Rfa and Rse, and obtain

u(ν) · ∆ν   = 
Ase · Neff2 · u · ∆ν · Afa · f(E) · (1 – f(E + hν)

Ase · Neff2 · u · ∆ν · Bsp · f(E + hν) · [1 – f(E)]
  – 

Ase

Bsp

Now insert the Fermi distribution and shuffle once more - good exercise! - , and you get

u(ν) · ∆ν   =  
Bsp

Afa · exp (hν/kT )  –  A se

We now have an equation for the density of photons at some particular frequencies defined by the semiconductor.
However, we have not made any specific assumptions about this frequency except that it is in thermodynamic
equilibrium

This requires that u(ν) · ∆ν obtained in this special way must be precisely identical to the radiation density as
expressed in Plancks fundamental formula (which was derived in another advanced module) and we have

8π · nref 3(hν)2

h3 · c3 · exp (hν/kT)  –  1
· d(hν)  =  

Bsp

Afa · exp (hν/kT)  –   Ase

With this equation we have reached our goal and proved that

Afa  = Ase

Can you see why? Well - the equation thus must be valid at all temperatures. This is only possible if Afa = Ase!
Think about it!

Using this equality we finally obtain

Bsp  =  
8π · nref3 · (hν)2 · Ase

h3 · c3
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This is an important, if slightly sad equation. It says that the Einstein coefficient of spontaneous emission is some
constant times the Einstein coefficient of stimulated emission times the square of the frequency.

In other words: At frequencies high enough, spontaneous emission always wins - it will be hard to make an X-ray
Laser!
Unfortunately, the result we obtained does not change by doing more fancy math, e.g. by using the more precise
equation for the transition rates from the advanced module. We have to live with it.

We could go on now. After all, spontaneous emission is a recombination channel that we have treated before - in
chapter 2 and chapter 5.

In any case we simply had for the net recombination rate U = ∆n/τ and U was the net recombination rate. For the
fraction that recombines via spontaneous radiation, we simply have to take the lifetime τ for that process and
obtain
U = ∆n/τsp .

On the other hand, the definition of the spontaneous emission rated from above can be rewritten as

Rsp  = Bsp · ne · nh

because the effective density of states times the relevant Fermi distribution gives simply the density of electrons
and holes in their bands.
The density of carriers we write, as ever so often, as

ne  = ne 0  +  ∆ne

   
nh  = nh0  +  ∆nh

   
ne0 · nh 0  = ni2

We then have the cases

∆ ne  = ∆n  <<  ne 0, nh0

i.e almost equilibrium, and

∆n  >> ne0 ,  nh

i.e. the high injection case.

For the rate of spontaneous recombination, we then may distinguish the extreme cases of near equilibrium ( ∆n ≈ =
0, and ∆n >> nmin and express this in rates of spontaneous recombination. For ∆n = 0 we would have equilibrium
with a recombination rate for the spontaneous recombination of

Req sp  = Bsp (ne0 · nh0)

for ∆≈ 0, or

Reqsp  = Bsp · ni2

For non-equilibrium, which is the condition we are ususally considering, so we drop the index on Rsp, we have
generally

Rsp  = Bsp(ne0  +  ∆n) · (nh0  +  ∆n)
   
  = Bsp[ni2  +  ∆n · (ne0  +  nh0  +  ∆n
   
  = Reqsp   +  Bsp · ∆n · (ne0  +  nh0  +  ∆n)
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R eqsp becomes negligible as soon as ∆n >> nmin which is not yet high injection and which we will have in all
interesting cases. We thus finally approximately

Rsp  ≈ Bsp · ∆n · (ne0  +  nh 0  +  ∆n)

Equating these expression with the simple formula R sp = ∆n/τsp under all conditions, we can now express the life
time in terms of the Einstein coefficient and the carrier concentration.

For low injection conditions, i.e. relatively small ∆ n meaning Rlisp≈ B sp · ∆n · (ne0 + nh) we have

τlisp  = 
1

Bsp · (ne0  +  nh)

For high injection, i.e ∆n >> nmaj, meaning R hisp ≈ Bsp · ∆n·(∆ n), we have

τhisp  = 
1

Bsp · ∆ n

This compares favorably with our old Shockley-Read-Hall formula where we had

τ = 
1

v · σ · nmaj

with v = thermal velocity and σ = capture cross section .

Here some circle closes. But we will delve no more into this subject but simply remember: The Einstein coefficients
of stimulated emission and fundamental absorption are identical for very fundamental reasons!
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Exercise 6.1-1

Shuffling Fermi Functions

"Shuffling" Fermi distributions, while not really difficult, needs some practice and getting used to; it is good exercise
to do it a few times (you may also consider to try it for some shuffling done before).

Show that the 1st laser condition

EFe – EF h  ≥  hν   ≥  Eg

follows directly from

Rse

Rfa

 = 
[fe in C(E1 + hν, EFe , T)] · [fh in V(E1, EFh, T)]

[1 – fh in V(E 1, EF h, T)] · [1 – fe in C( E 1 + hν, EFe, T)]

Link to the solution
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Solution to Exercise 6.1-1

It's not so difficult. Just do it yourself.

Well, you may have a look at the very first international publication about this topic: M. G. A. Bernard, G.
Duraffourg, Laser Conditions in Semiconductors (Physica Status Solidi, 1961).
How it came that such a fundamental result was published in a newly founded journal based in East Berlin and
not in one of the highly ranked US American journals (which are the "usual suspects" in such a case) was
revealed 51 years later by M. Bernard: The history of laser conditions in semiconductors (Semiconductor Science
and Technology, 2012).
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Standard LED Designs

First we discuss the edge-emitting LED a bit more closely. While for general light source purposes (i.e. for the red
rear lights on your bicycle) LEDs that emit light in all directions are useful, you want the emission to be focussed in
one direction if you use the LED for optical communication purposes.

In most cases, the emitted light will be fed into a fibre optics cable, and the losses should be minimized. This
requires a good coupling of LED and cable and of course the light should only be emitted into the direction of the
cable.
This is automatically the case with edge emitting LEDs. Below an example based on GaAs/GaAlAs
heterojunctions.
 

 
Next, a similar structure based on InP/InGaAsP heterojunctions. The angle into which light is emitted is indicated

 

 
Both structures are suitable for coupling to an optical fibre.

The simpler area emitting diodes can be made fit for communicating purposes, too.

Shown below is an example of the "Burrus type" (after its inventor, C.A. Burrus )

The principle is relatively clear, the technology, however, needs some thoughts.
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Recent Developments in LEDs

Here is some more information about the inverted Pyramid LED.

It was described quite recently (M.R. Krames et. al., "High-Power truncated-inverted-pyramid (AlxGa1-
x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Applied Physics Letters,
75[16], pp. 2365, (1999)) and has a large optical efficiency leading to a "external quantum efficiency" which is
simply the what we called total external efficiency of 55% (as compared to about 30 % of the former champion).
The cross section below shows why: There are few reflection losses. Otherwise the device is not quite as simple
as looks like. It is based on an epitaxially-grown aluminum gallium indium phosphide/gallium phosphide
(AlGaInP/GaP) multiwell active region sandwiched between an n-type gallium phosphide (GaP) layer and a p-
type GaP layer.

More information can be found in a recent article from the internet or in the Scientific American from February
2001.
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Replacing Light Bulbs

Here the leatest news from end of 2006:

22 December 2006
Nichia develops record 150lm/W white LED
Japan’s Nichia Corp has developed a lamp-type white LED (part no. NSPWR70) with an efficacy of 150lm/W (a
luminous flux of 9.4lm) and a color temperature of 4600K at a drive current of 20mA in the lab. The efficacy is 1.7
times that of a three-wavelength fluorescent lamps (90lm/W), 11.5 times that of an incandescent lamp (13lm/W)
and even better than a high-pressure sodium lamp (132lm/W), which is regarded as the best possible efficacy
light source in the conventional market. In March Nichia developed 100lm/W white LEDs (and shipped samples in
August). In June rival Cree reported a white LED chip delivering 131lm/W at 20mA, then in November Nichia
raised the record to 138lm/W. Nichia’s 150lm/W LED has been developed sooner than the 2007 timescale
targeted on its development roadmap. The product release has not yet been scheduled for commercial release.
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Reverse Recovery Time of Junction Diodes

The basic situation is shown in the figure in the backbone module which will be repeated here in a somewhat more
detailed fashion.

We switch from a forward condition to a reverse condition at some time. The external voltage (blue lines in the
diagram) is supposed to change suddenly (we have an ideal switch)

What we would measure in terms of the junction voltage and the junction current is shown in magenta or red,
respectively.
The outstanding feature is the "reverse recovery", the reverse current flowing for some time after we switched the
voltage. Right after the switching it will be limited to UR/R for a time ts, because we can not drive more current
than that through the circuit. But after ts seconds, the current decays with some time constant tr until it reaches
the small (zero in the picture) static reverse current of the junction.
If we look at tr quantitatively, we take it to be the time it takes the current to decay to 10% of the plateau value.

Can we calculate this behavior, which of course is the crucial behavior for the large signal switching of a pn-
junction?

Well - not without some problems. But we can understand what others have calculated. Let's see.

During static forward behavior, we have a surplus of minority carriers a the edge of the space charge region, and
this surplus concentration has to disappear after we switch to reverse conditions. We looked at that in some
details before, and we already have some equations for this case
We have to solve the relevant diffusion equation as given in the link above, but now for different conditions. Before,
we looked at the static case (i.e. ∂n min(x,t) / ∂t = 0, now we want to calculate how the minority carrier
concentration changes in time.
So, once more, we have to solve the relevant continuity equation. We do it for one side of the junction only; the
other side then is trivial.

∂ nmin(x,t)

∂t
 = D ·

∂2nmin(x,t )

∂x2
  –  

nmin(x,t)  – n0

τeff

The last term simply governs the disappearance of carriers by recombination; otherwise we just have Ficks
second law. For τeff we have to take the minority carrier lifetime τ or the transit time τtrans as the geometry
demands (in-between situations are messy!).

If we have the solution for nmin(x, t), we can calculate everything else easily, the voltage across the junction. e.g. is
always

Ujunct  = 
kT

q
 · ln 

∆ nmin(x, t)

n0

Now we have to look at the boundary conditions for the problem

If you look at the picture above long enough, you realize that as long as Ujunct is positive, the boundary
conditions are
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IR  =  
UR

RR

 =  q · D ·
∂nmin (x,t)

∂x  

As soon as U junct = 0 V, the boundary conditions need to be changed to

nmin (0,t)  = n0

You don't see it? That's OK, at least for the second case. The boundary conditions are actually only
approximations, and would take a lengthy discussion to justify them (in particular the second one and the switch
over point) in detail. So just believe it.

Now it is math - solving differential equations with certain boundary conditions. Not so easy, but doable. According to
Kingston (1953), the solutions for the two time constants ts and tr are (in implicit form)

1

1 + IR/IF
 =  erf 





ts

τeff





1/2

 erf 




tr

τeff





1/2
 + 

exp –(tr/ τeff )

π · tr/τeff

 =  1  +  
0,1 · IR

IF

with erf = error function as we know it from diffusion problems.

OK. May the force be with you when you try to prove these solutions or just to extract data. Only one thing is clear:
We better look at the ratios ts/τeff and tr/τeff than at the t 's directly.

Well, there are always the approximations, which we are going to use here:

ts  +  tr  ≈ 
τeff

2 

 ·  
IF

IR

Even better, there are complete solutions in graphical form:

 

 
The solid lines are for the "small" diode, where we have to take the transit time for τeff, the dashed line indicate
the "large" diode case.

It is clear that you really can achieve much larger switching speeds for a given τeff by being smart about I R/IF, i.e. if
you increase IR (or decrease IF, but that is rarely an option)

However, don`t forget the prize you have to pay: Large reverse currents while "idling" = large losses = heating
your device.

This is the first inkling we get that there is some trade off between speed and power.
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Market III-V Compounds

 
Here is a short article to the market for III-V compound semiconductors as it appeared in "Solid State Technology in
Jan. 2003.
 
Consumables in compound semiconductors top $1B in 2002

The global market for critical consumables utilized in the fabrication of compound semiconductor-based devices
such as laser diodes, light-emitting diodes, and ICs reached almost $1.1 billion in 2002, according to a study
recently by Kline & Co. Overall, Kline projects the global market for these materials to double from $1.1 to $2.2
billion over the next five years.
The continued growth of this industry sector and the need for high-value-added chemicals and materials are
forcing many companies to reevaluate their market strategies in this industry, according to Michael Corbett,
director of Kline's electronic chemicals and materials practice. "This market is much more than a niche
opportunity, and several companies are actively pursuing aggressive growth strategies here." Many of the
suppliers of chemicals and materials to the compound semiconductor industry, including Air Products,
Honeywell, Matheson Tri-Gas, and Shipley are also suppliers to the CMOS semiconductor industry," says
Corbett. "These companies feel that they can take lessons learned in CMOS and apply them here to develop new
business models to better meet customer needs."
Growth for compound semiconductors will continue to be fueled by the continued use in mobile wireless
communications, especially for power amplifiers in handsets such as cellular telephones, pagers, and global
positioning systems, the research firm said.
Superior performance in photonics, however, explains most of the excitement over the future of compound
semiconductors. Markets for laser diodes and high-brightness LEDs appear favorable in the short term as new
products are developed for outdoor signage, optical storage, automobiles, and new lighting systems. In the
medium term, the market for infrared lasers and detectors is likely to show significant growth from a base that
has been severely depressed by overstocking and low demand, said Kline and Co. In the long term, there is the
hope that LEDs will become commonplace as substitutes for indoor lighting. If this happens, sales could
suddenly skyrocket, but the cost of making LEDs from compound semiconductors would have to come down
significantly. Major lighting companies such as Philips are currently investing R&D resources to that end.

Semiconductors - Script - Page 149

kap_9\illustr\i9_1_1.html

Ill
us

tr
at

io
n



SiC Crystal Growth and Defects

That would be a very interstting module to write. Do it!
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History of SiC

In contrast to diamonds, SiC is never found on this world (and thus never became a valued gemstone in the past).
Only in fragments of other worlds (i.e. meteorites), on occasion contain SiC as has been found by Moissan in 1905.
Mineralogists thus call "natural" SiC " Moissanite".

It was Berzellius , who in 1824 first observed (man-made) SiC. But it was not before the invention of the
electric furnace by E.H. and A.H. Cowles , and its application to carbon compounds by Acheson around
1885, that SiC came into focus as a useful material.
Acheson was actually looking for a material that could replace expensive diamonds needed for cutting and
polishing purposes. " Carborundum ", the fine-crystalline SiC stuff, made it big and is still much used today.
The name was a take off on "Corundum", the mineralogists name for Aluminumoxid, Al2O3.

In the "Acheson reactor" on occasion relatively large single crystals could be found in voids and channels formed
during processing.

Checking such a crystal for possible uses as a "crystal" in the early "crystal detector radios", H.J. Round
noticed (and described in a paper) that cold light was emitted from the SiC - metal point-contact structure. This
was the very first description of a LED! Of course, Round did not, and could not understand what he saw.
In 1912 H. Baumhauer discovered the polytypie of SiC - not a mean feat at this date!

In 1955, Lely made the next big step in inventing the "Lely growth method" which is still used nowadays to some
extent. This really triggered the use of SiC as an electronic material.
Let's just look at some of the more interesting dates in the development of SiC as an electronic material:

1958 First SiC conference in Boston
1966 First MOS transistor (H.R. Phillip, E.A. Taft)
1977 Development of the modified Lely growth technique by Yu.M. Tairov; producing first commercially
interesting single SiC crystals.
1977 First commercial LED based on SiC from V.F. Tsvetkov at Siemens (not a big success, quote
from the Net: "The first original commercially successful blue (SiC) LEDs (were) pioneered by Cree in
the early 1990's. I have been advised that Siemens dabbled into the blue LED game as far back as the
1970's and produced working models, but my impression from seeing commercially successful
products is that Cree is the first significantly commercially successful producer")
1978 First bipolar transistor (W. von Münch)
1983 Heteroepitaxie of SiC on Si (S. Nishino, J.A. Powell, H.A. Will)
1987 Cree Research Inc., the first commercial supplier of SiC substrates, was founded
1989 1 inch SiC single crystals
1993 2 inch SiC single crystals
1994 3 inch SiC single crystals
1999 4 inch SiC single crystals
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Photo Luminescence of SiC

Siemens actually made and sold a a SiC based LED around 1975 that emitted bluish light.
It was not a success and was quickly abandoned. A few year after (the Internet had not yet been invented) it was
completely forgotten and it seems to be very difficult to impossible to unearth any documentation to this very first blue
LED of humankind
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Peierls Instability

If you look at the basic model of a conjugated polymer chain with delocalized π -bonds long enough, you must realize
that you are simply looking at one possible embodiment of a one-dimensional free electron gas model.

In a first approximation, we assume - as always - that the potential for the electrons along the chain is constant,
and that the chain has some length L - here we are. For the π -electrons that we are looking at, we obtain the
good old free electron gas dispersion function

Eelect   =  

2 · k2

2 m

In a second approximation, we now throw in some periodic potential and consider the Fermi energy.

This gives us Brillouin zones, changes of the dispersion function mostly on Brillouin zone boundaries, and some
wave vector kF separating occupied from unoccupied states. The dispersion function shown just above will
change to something more complicated with a band gap at the Brillouin zone boundaries.
Notice that the emphasize here is on some periodic potential. The whole apparatus mentioned above works for
any periodic potential, not just for a periodic array of atoms or ions.

In particular, a periodic distortion of the bond lengths as shown below must be expected to somehow influence the
behavior of the electrons in the systems - we may consider it to be a periodic potential, too.

The picture below shows a possible elastic deformation - we shortened the double bonds by having some strain
2ε, or alternatively, we elongated the single bonds by 2ε

This does not happen, because the double bond has an intrinsically, i.e. electronically determined shorter bond
length, but only because we - in this thought experiment - put some elastic stress on the bonds.

We now have some elastic or mechanical energy E mech stored in the strained bonds. The magnitude of Emech for
one unit volume of the chain is simply

Emech(ε)   =  
σ · ε

2
 =  

Y · 2ε2

2
 =  Y · ε2

We substituted the stress σ via σ = Y · ε with Y = Youngs modulus.

If you have some doubts about this formula - that's fine. But we only want to get the flavor of what is happening,
and in principle what we are doing is correct, give or take some factor of 2 or so.

Now, after we "somehow" mechanically deformed the chain in a periodic fashion, we consider the effect on the π-
electrons.

Without the deformation, they experience a constant potential U = 0 - that was, after all, our starting point within
the free electron gas model.
But with the deformation, they now see a periodically changing potential U(ε). We changed the positions of the
atoms or ions, and the only effect that can have is to induce a periodic variation of the potential energy for the
electrons which will depend on ε, of course.
We have no idea how large that effect is going to be, but the most simple formula we can use in a first
approximation would be

U(ε)  =  2 · A · ε · cos




π

a
· x





The proportionality constant A is actually of considerable interest in general terms: It can be interpreted as some
kind of coupling constant between electrons and phonons .
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After all, a periodic displacement of atoms from their regular lattice positions is a phonon - even if doesn't bounce
around a crystal.

Now let's look at what all that means in reciprocal space. We can use one of our old pictures for this in slightly
modified form

We have a band gap at the Brillouin zones, of course. It's magnitude is directly given by the amplitude of the periodic
potential, i.e. we have

Egap  =  2 · A · ε

The last thing we need to notice is that the available states will be occupied right up to the 1st Brillouin zone,
because we have one "free" electron per lattice constant.

What we see now is that the total energy of the "free" electrons is smaller if there is a band gap. But we don't get it
for free - we have to pay some elastic energy Emech to get a reduction in the electronic energy.

In order to find out out if "pays" to invest some elastic energy Emech with respect top the return of electronic
energy, we have to look eat the total energy Etotal (ε) = Emech(ε) + E elec( ε ) and see if it has a minimum , and if
yes, for what kind of elastic deformation .
Doing that is not exactly easy - even for our rather simple minded approximations used so far.

But it is not so difficult either, so that we cannot understand the gist of the argumentation here

So let's not go onto details, but just discuss what needs to be done.

First, we need some formula for the dispersion curve for the case with a band gap. Whatever this formula will be,
it depends on the magnitude of the band gap, i.e. on the amount of strain ε and on the constant A , which
describes how much an elastic deformation influences electrons.
This formula, as always, also defines the available states for the electrons in k-space.

The total electronic energy of the system then is simply the integral over this curve up to the last occupied
states, i.e. up to the Fermi wave vector or Fermi energy.
To this integral we add the elastic energy that we have to invest to produce the periodic potential in the first place.
This gives us the total energy

Etotal(ε) = Eelec(ε) + Emech(ε)

Then we find the minimum of that total energy by differentiating it with respect to the strain ε and setting the
resulting differential quotient to zero, i.e. we do

∂ Etotal(ε )

∂ε
  =  

∂

∂ε





kF
⌠
⌡
0

E(k,ε, A )  +  Y · ε2




 = 0

This will be our master equation. It looks pretty formidable even for the most simple model and approximation we can
chose. We can easily make it more complicated by looking at more sophisticated models, but it always will have
always one basic property: It either has a solution or it doesn't.

If it has a solution, it means that a Peierls instability does occur because it is energetically favorable. An inherent
symmetry will be broken by some elastic deformation, and a band gap in electronic states will open up. This gap
might be so small that at room temperature it will not be noticed, but it will be there nonetheless.
If it does not have a solution, it means that there is no Peierls instability - bond lengths are the same, the band
structure does not have a gap, and the (model) material is a conductor.
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As it turns out, for out problem the master equation does have a solution, and that is also true if you use more
sophisticated models or math.

In the most simple form, one obtains for the strain ε that minimizes the total energy something like

ε   =  

2 · kF2

m · A 
  ·  

1  

sinh – ( 2 · kF · π · Y / 4 · m · A2)

It's not so obvious, what this means. Look up the hyperbolic sinus here if you are unsure what it looks like .

Playing around with numbers a bit (which means making some educated guesses about the range of possible
values for A), one realizes that the argument of the hyperbolic sinus tends to be >>1, which means we can
approximate the equation from above by

ε  ≈  
2 · 2 · kF2

m · A 
  ·  exp –

2 · kF · π · Y

4 · m · A2

That is an interesting equation, because it comes up in similar form for various problems, most noteworthy,
perhaps, for superconductivity , which also owns its existence to some kind of Peierls instability

Looking back, we now can draw some more conclusions:

For conjugated carbon chains, the Peierls instability has a large effect. For the most simple real conjugated
polymer which is poly ..... , it causes the transition from a one-dimensional metal to a semiconductor with a
rather large band gap of ≈ 1.6 eV.
But any periodic arrangement of atoms, ions or whatever, might undergo some kind of Peierls instability. It might
be so small, however, that it is not noticeable at finite temperatures.
The effect is not limited to one-dimensional chains. As long as we can consider the x-, y- and z-dimension of the
electronic energy separately, as we do in the free electron gas model, we will have a Peierls instability in three
dimensions, too.

However, let's not get too general at this point. The Peierls instability results from the coupling of phonons and
electrons, and this is but a first step into a complicated world of collective phenomae in solids.

It may happen, and if energetically favorable, it will happen, causing large effects on occasion, as for conjugated
polymer chains. But other effects might happen, too, and it would be too simple minded to invoke the Peierls
instability for everything out there not yet understood by us.
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Ramsdell Notation for SiC Polytypes

The Ramsdell notation for the stacking of hexagonal layers of atoms is simple (and not always extremely useful):

Specify the total number of layers contained in a (possibly large hexagonal) unit cell and then add the letter H, C or
R) to denote the over-all lattice type as being hexagonal , cubic, or rhombohedral , respectively.
The most simple variants are thus

2H for the hexagonal close packing, i.e. for a ABABA.... sequence in the "ABC" notation familiar from
Matwiss I for the hcp Bravais lattice
3C for the cubic close packing, i.e. the ABCABCA.... sequence of the fcc Bravais lattice.

The designation "6H-SiC " thus means that we have 6 layers in some stacking sequence that follows the basic rules (no
"head-on-head" configuration; B or C after A; A or C after B, ...) and produces an unit cell that is hexagonal.. Let's look
at examples to get the idea:

Now you have problems:

1. There might be more than on way to stack, e.g., 6 planes with a hexagonal unit cell. The designation 6H thus may
not be unique.

This is indeed the case as shown above. Subdivisions are needed; we have, e.g., the 6H1 and 6H2 configuration.
Just how many possible subdivision are possible is not easily seen, however.
Note: While all "legal" stackings of 6 planes produce a unit cell of the hexagonal type, it is not necessarily the
smallest Bravais lattice of the structure, not to mention the smallest unit cell! Looking at smallest unit cells, you
might rather end up with a cubic or rhombohedral lattice. For the 3C structure this is sufficiently clear, for the others
you have to believe it (or to sit down and do serious crystallography). This leads directly to the second question:

2. It is easy, of course, to generate all kinds of allowed stacking sequences for a given number; say 9. Repeating the
sequence will produce a crystal with some Bravais lattice. But is it possible to have all kinds of combinations? What is
possible? Is there besides a 9H also a 9C, and/or a 9R configuration? Could other Bravais lattices come up?

Who knows. What kind of lattice you get, e.g., is not directly obvious from the picture above (at least not to me).
There will be restrictions, of course; e.g. since the Si- and C-Atoms must always be tetrahedrally coordinated in any
allowed stacking sequence. It appears that you always have only cubic, hexagonal and rhombohedral Bravais
lattices to deal with.
So we will let the matter rest, assuming that crystallographers have figured it out and that, if necessary, the
questions above can be answered unambiguously.

There are many more polytypes besides the ones shown in the picture. A more common one is actually 15R (stacking
sequence ABCBACABACBCACB).

Most stable is, perhaps, the 3C structure (also known as β-SiC) at lower temperatures, and the 6H modification (α-
SiC) above about 1800 0C. In other words, we have a phase transformation upon crossing a certain temperature.
But there are many more variants; the list goes up to 39H, 39R, 45R and 51R.

This brings up an obvious and difficult question:

How, for an extreme example, a growing 51R crystal "knows" what has happened 51 stacking planes below, when it
adds another layer, is still a kind of mystery. The crystal must "know" somehow, otherwise it could not do the
proper stacking - think about it.
Considering that we usually may safely neglect interactions between second-nearest neighbors in a lattice, this is a
tough nut to crack, indeed!
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Vocabulary for Semiconducting Polymers

Cis- (and Trans) Configuration

Given the geometry of the sp2 hybridization required for every carbon atom of a conjugated polymer chain, the
arrangement of carbon atoms can follow two basically different "recipes" as shown below

The meaning of "cis" and "trans" configuration becomes clear, but bear in mind that we also could have just a
statistical arangement or some trans in mostly cis, or... . You get the point.

  

Conjugated polymer

Any polymer with alternating single- and double bonds along the chain

The general way of drawing that is —C==C—C==C—C==C—; of course always with one "something attached to
every C-atom
However, looking at the three-dimensional bonding structure following from the sp2-hybrid orbitals of the carbon
atom, it becomes clear that the chain cannot be perfectly linear. This allows then for variants for the same basic
chemistry known as "cis" and "trans" configuaion

  

Peierls instability

See the extra module for that

  

Pi (π) - Bonds

  

Sigma (σ) - Bonds

  

Trans- (and Cis) Configuration

Given the geometry of the sp2 hybridization required for every carbon atom of a conjugated polymer chain, the
arrangement of carbon atoms can follow two basically different "recipes" as shown below

The meaning of "cis" and "trans" configuration becomes clear, but bear in mind that we also could have just a
statistical arangement or some trans in mostly cis, or... . You get the point.
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Question to the Notation

The question you should have is:

It was stated that the "R" in the polytype notation stand for "rhombohedral . A rhombohedral unit cell is defined by
a1 = a2 = a3; α ≠ β ≠ γ.
So why the hell are two lattice parameter (a and c) given in the table for the 15R-SiC polytype?

 
Good question!

The answer is that the "R " refers to the smallest Bravais lattice cell that is contained in the structure and thus
would be sufficient to describe the full structure. The lattice constants given, however, refer to the largish hexagonal
unit cell that contains 15 layers referred to with the "15" in R15. The rhombohedral cell is simply a sub-unit of this
hexagonal cell.
This is simply more convenient; because we all can easily see the hexagonal cell in some drawing of the stacking
sequence, but not so easily the rhombohedral cell contained in it.

And this is also the reason why for the "3C" polytype we do not give the parameters of the hexagonal cell, which logic
now would demand, but the (one) lattice constant needed for the (one) cubic lattice. We simply know it's cubic, even if it
is hard to see, too.
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Comparison of SiC to other Semiconductors

Here are some particular noteworthy SiC properties in comparsion to those of GaAs and Si.

The data are mostly form Cree Inc.

 6H-SiC
4H-SiC GaAs Si Comments

Bandgap
[eV]

3.03
direct

1.4
direct

1.12
indirect

SiC devices can operate at rather high temperatures
without suffering from intrinsic conduction effects
because of the wide energy bandgap. SiC can also
emit and detect short wavelength light which makes
the fabrication of blue light emitting diodes and nearly
solar blind UV photodetectors possible.

Breakdown Electric Field
[MV/cm]
(for 1000 V operation)

2.4 x
106

0.3 x
106

0.2 x
106

SiC can withstand a voltage gradient (or electric field)
over eight times greater than than Si or GaAs without
undergoing avalanche breakdown. This high
breakdown electric field enables the fabrication of very
high-voltage, high-power devices such as diodes,
power transitors, power thyristors and surge
suppressors, as well as high power microwave
devices. Additionally, it allows the devices to be
placed very close together, providing high device
packing density for integrated circuits.

Thermal Conductivity
@ RT
[W/cm · K]

3.0-3.8
4.9 0.5 1.5

SiC is an excellent thermal conductor; at room
temperature, SiC has a higher thermal conductivity
than any metal. This property enables SiC devices to
operate at extremely high power levels and still
dissipate the large amounts of excess heat
generated.

Saturated Electron
Drift Velocity
@ E ≥ 2 x 105 V/cm)
[cm/sec]

2.0 x
107

1.0 x
107

1.0 x
107

SiC devices can operate at high frequencies (RF and
microwave) because of the high saturated electron
drift velocity of SiC.

The "Saturated Electron Drift Velocity" is a property that we have not dealt with so far. It is easy to understand - the
name tells it all:

The relation between mobility µ, drift velocity vD, and electrical field E was vD = µ · E. However, for ever increasing
fields, the direct proportionality fails, and vD becomes saturated, i.e. does no longer increase with increasing
electrical fields.
The mobility µ then is no longer a useful quantity; we use the saturation electron/hole drift velocity instead. Of
course, the maximum speed of devices operated at high field strengths is directly related to this quantity. That is
where SiC has the advantage; simply comparing mobilities puts SiC at an disadvantage.

Cree concludes: "The physical and electronic properties of SiC make it the foremost semiconductor material for short
wavelength optoelectronic, high temperature, radiation resistant, and high-power/high-frequency electronic
devices.radiation resistant".

Note that a new property not contained in the table above sort of creeps in: SiC, or more to the point, SiC devices
are radiation resistant. Moreover (as mentioned elsewhere), they are "rugged", i.e. they can take a lot of
mechanical abuse.
To put it less euphemistic : SiC devices may still work if something (inluding atomic bombs) explodes nearby; in
satellites of all kinds, possibly exposed to lots of radiation etc. By now you get the point: SiC is of tremendous
interest to the military!
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Commercially Available SiC

Here are some product specification sheets taken directly from major suppliers for the 4H-SiC polytype.

First, the 50.8 mm standard. Note that there is only one p-type wafer, that the resistivity is always very low or
extremely large ("semi-insulating"), and that the "micropipe density" is a major parameter

Now the 50.8 mm standard. Note that there is only one p-type wafer, resistivities again are always very low or
extremely large ("semi-insulating"), and there is no "ultra-low micropipe density" available in Sept. 2003.

The "Off-axis" specs together with the low resistivity in the "orientation" column tells us that these wafers are only
intended as a substrates for an epitaxial layer.

Now the 6H-SiC wafers:
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Note that there is a lightly p-doped (1 - 5) Ωcm wafer.

No price quotes are given in the Internet. But SiC does not come cheaply. Prices of $250 - $500 (depending on specs)
for one 50 mm wafer are presently (2003) asked. Anyway, there is progress: In 1995 it was more like $600 - $2000.

For that kind of money you get several 300 mm Si wafers, which are far more perfect form a crystal quality point of
view. It follows that if people are willing to pay that much money for so little, SiC must be useful to some.
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