
Junction Diodes With Small Dimensions

 
Lets first look at the basic situation as we had it before for large diodes:

We have an excess of minority carriers at the edge of the space charge region stemming form the majority carriers
injected into the other part of the junction.

The difference of the actual concentration np,ne,h(U) and the equilibrium concentration np,ne,h(U = 0) was given
by
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Neglecting the – 1 for forward conditions, we have the exceedingly simple general relation that the current flowing is
simply the diffusion current at the edge of the SCR following from the concentration gradient via Ficks 1st law. Lets
look at this a bit closer.

All that counts is the slope d∆nmin/d x of excess minority carrier concentration at the edge of the SCR. It gives
directly the minority carrier current at the edge of the SCR - and that is the only current we need to consider.
Since it is the only component of the current flowing at this point of the junction, (we neglected the other principal
terms for the forward condition), and since the current is constant throughout the junction, it simply is the current.
We don't have to worry about the other side of the junction or anything else.
The junction current j thus is

j  =  – q · D ·
d∆nmin

dx


edge

SCR

What about the current deeper in the Si? The slope is smaller and this must lead to a smaller current, too. Yes - but
now we have a majority carrier current, too. Whatever we loose due to recombination in the minority carrier current
component, we gain in the majority carrier current component and the total current stays constant.
In order to compute it, we need the slope and thus ∆nmin(x).

We always obtain ∆ nmin(x) as the solution of a diffusion problem, taking into account boundary conditions, e.g.
∆ nmin(x = 0), i.e. at the edge of the SCR, or the disappearance via recombination.
One boundary condition is clear: At the edge of the SCR the excess concentration will be at a fixed value
controlled by the applied potential as described above .
The second boundary condition is less clear. When we derived the relation

∆n(x)  = ∆ n0 · exp –
x

L

we also got the current

j min(x = 0)  = 
q · D

L
· ∆nmin(x = 0)
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we implicitly assumed that the size of the diode was infinite and that minority carriers simply disappear by
recombination.

For a small diode now, with x-dimensions much smaller than L, we have to reconsider the diffusion problem.

Assuming that after a distance dCon << L we now have an ohmic contact, we must ask what the excess
minority carrier density will be at x = dCon .
To make life easy, we now simply include in the definition of a "good" ohmic contact that minority carriers
reaching it will recombine instantaneously. While this is pretty much true for real contacts, it is not necessarily
obvious.
With this assumption we simply have as the important boundary condition for a small diode .

∆n(x = dCon)   =   0

This makes the solution to the diffusion problem very simple.

Since practically no recombination in the bulk will take place - all minorities die at the contact - the current
everywhere is simply the minority carrier current. This necessitates that

d∆ nmin

dx
 = const =  –  

∆nmin  edge SCR

dCon

The current then is

j min  =  j =  –  q · D ·
d∆nmin

dx


edge

SCR

  =  
q · D

dCon

 · ∆nmin (x = 0)

This is exactly the same formula as for the large diode - except that we now have dCon instead of L as the important
length scale of the device.

Moreover, minority carriers will now disappear by recombination at the contact after an average time τtrans called
transit time given by the time they need for traveling the distance dCon. Obviously, we have

dCon  = D · τtrans



1/2

in complete analogy to the relation between lifetime and diffusion length

Of course, this is still a rather simple description of a small diode. We only restricted one dimension, since we still
treated a one-dimensional case.

Real diodes might be small in more than one dimension, and all kinds of other complications can be imagined.
Nevertheless, the device dimensions and the transit time will in one form or other replace the bulk diffusion length
and lifetime.
The importance of this can not be overestimated. Device sizes in integrated circuits are in the sub-µm region and
critically influence device behavior.
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