Solutions to

Quick Questions to

2.1 Basic Band Theory

Solutions to quick questions to 2.1.1: Essentials of the Free Electron Gas

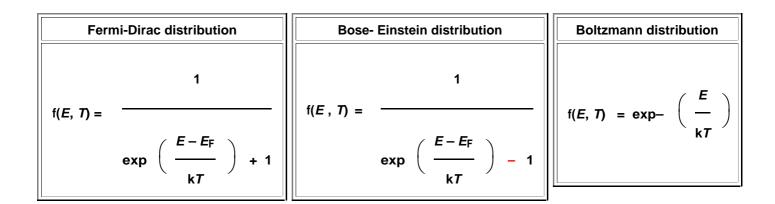
- What happens, if you do not choose $U = U_0 = 0$ but $U = U_1$?
- D The Energy scale for the total energy **E** moves up or down by **U**₁ since **U**₁ · ψ can be added to $E \cdot ψ$.
- What does the <u>sentence</u> "...a plane wave with amplitude (1/L)^{3/2} moving in the direction of the wave vector <u>k</u>" mean"? Wave vectors, after all, are defined in *reciprocal* space with a dimension 1/cm. What, exactly, is their direction in *real* space?
- The velocity vector of a car in real space has the dimension cm/s the dimension 1/cm for wave vectors thus means nothing. The wave vector comes into being by writing the components of a plane wave as follows

$$\psi(\mathbf{x_i}, t) = \mathbf{A} \cdot \sin \cdot \left(\frac{2\pi \mathbf{x_i}}{\lambda_i} - \mathbf{\omega} \cdot t\right)$$

With vectors we get

$$\psi(\underline{r}, t) = \mathbf{A} \cdot \sin \cdot \left(\underline{r} \cdot \underline{k} - \omega \cdot t \right)$$

- This defines <u>k</u> and by definition <u>k</u> is a vector in real space, pointing in the direction of wave propagation.
- The better question is: If we know <u>k</u> in reciprocal space (= Fourier transform of the real space), how can we conclude on the direction in real space? The answer is. Reciprocal lattice vectors with components <u>kh.k.l</u> are perpendicular to the lattice plane in real space with Miller indices (hkl) the direction in real space is thus given
- Recount what you know bout the spin of an electron.
 - 1. Everything contained in this <u>"basic" module</u>.
 - 2. Everything contained in this module describing the relation of spin and magnetic moment.
 - 3. The catchword "Spintronics" should also come up in this context.
- Where does the (1/L)^{3/2} in the solution come from? What would one expect for a crystal woth the dimension L_x, L_y, L_z?
- From the normalizing condition. The factor should change from $(1/L)^{3/2} = (1/L^3)^{1/2}$ to $(1/V^3)^{1/2}$.
- What kind of information is contained in the wave vector k?
 - 1. "Number" of solution or state.
 - 2. Wave length $\lambda = 2\lambda / |\underline{k}|$
 - 3. Momentum $\underline{p} = \hbar \underline{k}$
 - 4. Total energy **E** via dispersion relation (for free electron gas $\mathbf{E} \propto \mathbf{k}^2$
 - 5. Propagation direction pf plane wave with k
- Consider a system with some given energy levels (including possibly energy continua). Distribute a number **N** of classical particles, of Fermions and of Bosons on these levels. Describe the basic priciples.
- Fermions = Fermi-Dirac distribution
 Bosons = Bose-Einstein distribution (which we don't know so far)
 Classical = Boltzmann distribution and an approximation to the two fundamental ones
- Do it! Check the <u>link</u> for details to the Boltzmann distribution.



How does on always derive the density of states **D**(**E**)?

Volume of "onion skin" in phase space.

Compare the free electron model with and withour diffraction.

	Free elektron gas	Free elektron gas with diffraction
Potential <i>V</i> (<i>x,y,z</i>)	V = const = 0	$V_{x} = V_{0} \cdot \cos (2\pi x/a_{1})$ $V_{y} = V_{0} \cdot \cos (2\pi y/a_{2})$ $V_{z} = V_{0} \cdot \cos (2\pi z/a_{3})$ $V_{0} \rightarrow 0$
Wavefunktion ψ(x ,y,z)	$\Psi = \left(\frac{1}{L}\right)^{3/2} \cdot e^{i\underline{k}\underline{r}}$	$\Psi = \left(\frac{1}{L}\right)^{3/2} \cdot e^{i\underline{k}\underline{r}}$
		<i>except</i> for wavevectors <u><i>k</i></u> B that are being diffracted.
Wave vectors <u>k</u>	$k_{x} = \pm n_{x} \cdot 2\pi / L$ $k_{y} = \pm n_{y} \cdot 2\pi / L$ $k_{z} = \pm n_{z} \cdot 2\pi / L$	$k_{x} = \pm n_{x} \cdot 2\pi / L$ $k_{y} = \pm n_{y} \cdot 2\pi / L$ $k_{z} = \pm n_{z} \cdot 2\pi / L$
	$n_i = 0, \pm 1, \pm 2,$	n _i = 0, ±1, ±2,
Energy <i>E</i>	Total energy = const = <i>E</i> _{kin}	Total energy = const = E_{kin} except for wavevectors <u>k_B</u> that are being diffracted; then some potential energy comes into play.
Dispersion function <i>E(<u>k</u>)</i>	$E = \frac{\hbar^2 k^2}{2m}$	$E = \frac{\hbar^2 k^2}{2m}$ <i>except</i> for wavevectors <u>k</u> _B that are being diffracted.
Density of states <i>D</i> (<i>E</i>)		·

Density of states <i>D</i> (<i>E</i>)	$D(E) = \frac{(2m_{\rm e})^{3/2}}{2\hbar^3\pi^2} E^{1/2}$	$D(E) = \frac{(2 m_e)^{3/2}}{2\hbar^3 \pi^2} E^{1/2}$ as a first approximation., Could be rather different, however.
Probability of state being occupied f(<i>E</i> , <i>T</i>)	$f(E, T) = \frac{1}{\exp\left(\frac{E_{i} - E_{F}}{kT}\right) + 1}$ the Fermi distribution	$f(E, T) = \frac{1}{\exp\left(\frac{E_i - E_F}{kT}\right) + 1}$ toin <i>always</i> obtains!