
2.2 Basic Semiconductor Physics

2.2.1 Intrinsic Properties in Equilibrium

In this subchapter we deal with basic semiconductor properties and simple devices like p-n junctions on a somewhat
simplified, but easy to understand base. It shall serve to give a good basic understanding, if not "gut feeling" to what
happens in semiconductors, leaving more involved formal theory for later.

However: Intrinsic semiconductors are theoretical concepts, requiring an absolutely perfect infinite crystal. Finite
crystals with some imperfections may have properties that are widely different from their intrinsic properties.
As a general rule of thumb: If you cannot come up with a material that is at least remotely similar to what it should
be in its "intrinsic" state, it is mostly useless because then you cannot manipulate its properties by doping.
That is the major reason, why we utilize so few semiconductors – essentially Si, GaAs, GaP, InP, GaN, SiC and
their relatives – and tend to forget that there is a large number of "intrinsically" semiconducting materials out there.
For a short list activate the (German) link.

Silicon crystals are pretty good and thus are closest to truly intrinsic properties. But even with the best Si, we are not
really close to intrinsic properties, see exercise 3.1-1 for that. Nevertheless: This chapter always refers to silicon, if not
otherwise stated!

A few very basic aspects about semiconductors, including some specific expressions and graphical
representations, will be taken for granted; in case of doubt refer to the link with an alphabetical list of basic
semiconductor terms.

Fermi Energy and Carrier Density

In this first section we review the properties of intrinsic semiconductors . We make two simplifying assumptions at the
beginning (explaining later in more detail what they imply):

The semiconductor is "perfect ", i.e. it contains no crystal defects whatsoever.

The effective density of states in the conduction and valence band, the mass, mobility, lifetime, and so on of
electrons and holes are identical. (See below for any detail about these quantities.)

All we need to know for a start then is the magnitude of the band gap Eg. The Fermi energy then is exactly in the middle
of the forbidden band; we can deduce that as follows:

Namey, by just looking at a drawing schematically showing the density of electrons in the valence and conduction
band where, for ease of drawing, the Fermi distribution is shown with straight lines instead of the actual curved
shape.

Note that in the standard literature (especially in the English language scientific literature), typically one doesn't
sharply distinguish between carrier density and carrier concentration. If in doubt, look for the unit of measurement
relevant in the given equation.

The density of electrons, ne, in the conduction band is given exactly by

ne  = 

E'
⌠
⌡
EC

D(E) · f(E,T) · dE

With E ' = energy of the upper band edge.
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With the usual approximations:

Boltzmann distribution instead of Fermi distribution.
Substitution of an effective density of states, Neff at the band edge instead of the true, energy-dependent
density.
Integration from the lower band edge EC to infinity

we obtain

ne  = Neff e  · exp




– 
EC  –  EF

kT 





The light blue triangle in the picture symbolizes this density!

Neffe  (with the factor two for spin up/spin down included) can be estimated from the free electron gas model in a fair
approximation to

Neffe = 2




2 πmkT

h2





3/2

How this is done and how some numbers can be generated from this formula (look at the dimensions in the formula
above and start wondering) can be found in the link.

In an intrinsic semiconductor in thermal equilibrium, all electrons in the conduction band come from the valence band.
The density of holes in the valence band, nh , thus must be exactly equal to the density of electrons in the conduction
band, or

ne  = nh  = ni  = 
intrinsic
density

The dark blue triangle in the picture then symbolizes the hole density.

Important: This is how holes are defined , and for good reasons; as we will see (rather soon), only the empty
valence band states can reasonably be considered as being occupied by holes (= mobile positive charge carriers).
Given the assumptions made above and the symmetry of the Fermi distribution, the unavoidable conclusion is that
the Fermi energy is exactly in the middle of the band gap.

Carrier Density and Conductivity

The carrier densities are decisive for the conductivity (or resistivity) of the material. If you are not familiar (or forgot) about
conductivity, mobility, resistivity, and so on and how they connect to the average properties of an electron gas in thermal
equilibrium, go through the following basic modules:

Ohm's Law and Materials Properties

Ohm's Law and Classical Physics

We thus have the density of mobile carriers in both bands and from that we can calculate the conductivity σ via the
standard formula

σ  =  e · (µe · ne+ µh · nh)

provided we know the mobilities µ of the electrons and holes, µe and µh, respectively.

Again, simplifying as much as sensibly possible, with µe = µh = µ we obtain

σ = 2eµ · Neff e · exp




– 
EC –  EF

kT 





 = 2eµ · Neffe · exp




– 
Eg

2kT 





because we have EC – EF =  Eg/2 (with the fundamental band gap energy Eg) for the intrinsic case as discussed so
far.
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This gives us already a good idea about the comparable magnitudes and especially the temperature dependences of
semiconductors, because the exponential term overrides the pre-exponential factor which, moreover, we may expect
not to be too different for perfect intrinsic semiconductors of various kinds.
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