
Accumulation

This is the case where an electrical field of arbitrary origin attracts the majority carriers .

Starting with the Poisson equation for doped semiconductors and all dopants ionized, we have seen that we can
approximate the situation by
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In contrast to the case of quasi-neutrality, we now have (and the sign is important)
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This allows the approximation
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and the Poisson equation reduces to
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Using the Debye length LD= {(εε0 kT )/(e2ND)}1/2, or ND = εε0kT/e2L 2 D ,
the Poisson equation for accumulation can be rewritten as
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While this looks like a simple differential equation, it is not all that easy to solve it.

What we would need first, are defined boundary conditions so we can tackle the differential equation. There are no
obvious candidates, so we have to think a little harder now.

Accumulation means that we have some surface charge ρ that we put on the surface of the semiconductor (with
our fictive thin insulating layer in between).
We thus need to refomulate the differential equation so that surface charge can be included. the (not overly
obvious) way to do this is to introduce the electrical field strength E( x) as a new variable besides ∆EC.
For that we use the relation
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We also made use of the equaltity d∆E C/d x = e · E(x ) with E(x) = field strength.

Inserting and separating the variables (and omitting the "( x)" for clarity) gives

e2 · E · dE  = 
kT

L2 D
 · exp –

∆EC

kT
  · d∆EC
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Tricky, but worth it. Now we can integrate both sides. The integrations run from far inside the bulk , i.e. from E =
0, to some value of E, and that means from d∆EC = 0 to some corresponding value d∆EC.

Omitting the integration (which is trivial), we obtain
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i.e. an equation relating the amount of band bending at some position x to the electrical field strenght at this
point, which is
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For n-type semiconductors, which we are considering, ∆EC is negative and large (i.e. ∆ EC >> kT) - and we may
neglect the – 1, obtaining
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While this is fine, we still don't have the solution we want. We must now remember that there is a simple relation
tying surface charge to volume charge.

This is Gauss law, stating that the flux of the electrical field through a surface S is the integral over the
components of E perpendicular to the surface.
The charge is usually expressed in terms of charge density ρ(x,y,z). Gauss law then states:

⌠
⌡
⌠
⌡   E · n · da  = 

1 

ε ε
 · ⌠⌡

⌠
⌡
⌠
⌡  ρ(x,y,z) · dV

S  V

With n = normal vector of the surface S, da = surface increment, dV = volume increment. For more details use
the link.

For our case it means that we could replace the total charge ρ contained in a slice between x = ∞ (where there is no
charge and the field strength is E = E bulk = 0) and x, by a surface (or better areal) charge σ area(x) at x given by

σarea(x)   = εε0 · (E(x)  –  E bulk) =  εε0 · E( x)
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The total amount of band-bending induced by a real external surface charge σex is simply ∆E C(x = 0) which we call
∆EC0 :

∆EC0  =  ±  2kT · ln  
σex · e · LD

21/2 · εε0 · kT

So we have all we need. The +/- sign came from the two solutions of the square root; we have to pick the correct
one depending on the situation (holes or electrons considered).
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