Advanced

Solving the Poisson Equation for pn-Junctions

’ We have the general equation for the space charge p(x ), and the Poisson equation:

p(x) = e-{nN(x)—n®x) + N* p(x) - N-a(x )}

d2V(x)
€ €0- = -p(X)
dx?

V(x) is the built-in potential resulting from the flow of majority carriers to the other side.
’ We consider a solution for the following conventions and approximations:
The zero point of the electrostatic potential is identical to the valence band edge in the p-side of the junction

shown in the illustration.

All dopants are ionized, i.e. Noa =N~ a = nh, and Np = N*p = n®. This is always valid as long as the Fermi level
is not very close to a band edge.

’ For the carrier density we have the general expression

AE
neh = Neffe,h .exp - —
kT

and A E was Ep — Ef for electrons and E — Ea for holes.

If Ep, A is a function of X because the bands are bent (while Er stays constant), we may write the energy
difference as AE = AEQ + e - V(x) with AE = A EO referring to the situation without band bending.

The carrier concentration than becomes

AE + eV(x) AE eV(x)
N = Neff-exp— ————— = Neff-exp—-— -exp-
kT kT kT
e - V()
= Nap - exp—
KT

because the first term gives the concentration for V(x) = 0 and that is the dopant concentration in our
approximation.

We thus have for the carrier concentrations in equilibrium anywhere in the junction:

e V)
N (x) = Na-exp —
kT

e - {V(x) - V(n}
ne(x) = Np-exp— ———
kT

’ As soon as V( x) deviates noticeably from its constant value of 0 or V(n) - in other words: inside the space charge
region - the carrier concentrations decrease exponentially from their values Na or Np far outside of the SCR. We
therefore approximate their concentration by
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nh = Na for X < —da

nh = 0 for X > —da
n® = Np for X > d
ne = 0 for X < d

With da, dp = boundaries of the space charge region with x = 0 at the geometrical junction

’ The space charge then is only given by the concentration of the dopants. That's where we could have started right
away, just plugging in the usual assumptions. We have

p =Na for —da <x <0
p = Np for 0 < x < dpn
p=0 for everywhere else

’ The Poisson equation then becomes

d2v

— =0 for -0 < X < —da
dx?2

d2v e

— = 4+ —/ Na for —-da<x <O
dx2 €€

d2v e

— = - —Np for 0 <x < dp
dx2 €€p

d2v

— =0 for dp < x<w®
dx?

In addition we have the boundary conditions:

\% = 0

av for X = —da
_— = 0

dx

\% = V(N)

dav for X = dp
_— = 0

dx

da-Na = dp-Np Charge neutrality

’ The solutions are easily obtained, they are
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e
VAX) = —— - Na-(da +x)?2 for —da<x<0
2€€g
e
Vp(x) = V() — —— -Na-(dp — x)2 for 0 < x < dp
2 €€p
e
V(n) = —— (Na-da? + Np-dp?)
2€ €9

The last equation comes from the condition of continuity at x = 0, i.e. Vp(x = 0) = Va(x = 0.
The two limits of the space charge region, da and dp , as well as the field strength E = — dV/dx in the SCR thus

could be calculated if we would know V(n).
V(n), of course, is the difference of the potential across the SCR and thus identical to 1/e times the difference of

the Fermi energies before contact in thermal equilibrium, we have

E"F — EPE
V(n):_

If we superimpose an external voltage U, V(n) becomes (watch out for the correct sign!) .

E"r — EPf
V(n) = ——— teU
e

’ The following illustration shows the whole situation in one drawing.
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’ We now can express the width dscr of the space charge region as

1 1 1 1/2
dscr = da +dg = —|[2€€p-[AEF+e -Uex] | — + —
e Na Np

AEE refers to the the difference of the Fermi energies before the contact and Uey is the external voltage.
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