
Alternative Derivation of the Einstein Relation

In this derivation we consider the forces acting on carriers and the currents resulting from these forces.

The important point to know is that within the general framework of mechanics and thermodynamics, forces are
generalized and expressed as the (space) derivatives of thermodynamic potentials.
In particular, diffusion currents due to concentration gradients of the diffusing species may be seen as an
expression of a chemical force Fchem that acts on particles. We call it chemical because it tends to change
particle numbers.
The value of the chemical force is always given by the derivative of the chemical potential; looking at a one-
dimensional case we thus have

Fchem, x  =  F  =  –  
dµchem

dx
 =  –  

dEF

dx

Of course, we will never confuse µchem, the chemical potential, with µ, the carrier mobility!

Looking at the most general case with only local equilibrium in the bands, we use the Quasi-Fermi energies, EF e and
EFh, given by

EFh   =   EC  –  kT · ln 
Neeff

ne
    

EFh   =   EC  +  kT · ln 
Nheff

nh

We thus have for the chemical forces

Fe  =  –  
d EFe

dx
 =  – 

dEC

dx
 + 

kT 

ne
 · 

dne

dx

Fh  =  –  
dEFh

dx
 =  – 

dEA

dx
 + 

kT 

nh
 · 

dnh

dx

In what follows we drop the indexes "e" and "h" and write only one set of equations for the conduction band ( i.e.
for electrons). For holes everything is the same, both equations can be retrieved at the end by proper indexing.

We allow for the band edges to be functions of x, i.e. EC = EC(x) and EV = EV(x). What then determines the
numerical value of the band edge energy (for some defined zero point of the energy)? There are two factors:

The particular kind of semiconductor or crystal considered - this defines the band structure in general. We call
this part E Cryst, and note, while ECryst is constant in semiconductors of one kind of material (and omitted from
formulas), it generally may be a function of x . Examples are materials with compositions that change gradually
(e.g. Si-Ge alloys, or GaAlAs with "sliding" Ge or Al concentration, respectively).
External or internal electrical field Ex = – dV(x)/d x due to the electrostatic potential V( x) that must be
superimposed on the band energies as – |e|V with |e| = magnitude of the elementary charge. In the following we
drop the magnitude signs for the sake of convenience. ( We will write the electrical field Ex in pink here, to avoid
confusion with the various energies).

We thus can write

d EC

dx 

 = 
dECryst

dx 

 +  e · Ex
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This yields for the force

Fchem  =  – 
dECryst

dx 

 –  e  · Ex  –  
kT

n
 ·  

dn

dx

The chemical force will cause a particle movement exactly as an electrical force (which is now a part of the chemical
force). The result is the same as in the basic treatment of the electrical conductivity: There will be a constant average
drift velocity in the direction of the force and we obtain

<vchem> = average velocity due to the chemical force = const. · Fchem.

For an electrical field Ex in x-direction, we had
< velect> = average velocity due to the electrical force Felect = e · Ex.
<velect > must be a constant and we defined < velect>/Ex = mobility µ, or

<velect>

Felect

 = 
µ

e

Since the scattering processes that caused < velect> to be constant are the same for all forces, the proportionality
constant between force and average velocity must be the same, too. We thus can write

< vchem>/F chem = µ/e or (dropping indexes for convenience again):

< vchem>  =  v  =  
µ

e
 · Fchem

The electrical current carried by this velocity is

j  = e · n · <vchem >  =  n · µ ·  
dE(x)Cryst

dx 

  +  e  · n · µ ·Ex (x)  –  µ · kT ·
dn( x )

dx

If we now consider the usual case of a semiconductor with E( x )Cryst = const., and a zero net current (j = 0), we are
left with

e · n · µ · Ex  –  µ · kT  ·
dn

dx
 = 0

The second term is an (electrical) current due to a concentration gradient which, according to Ficks first law,
always can be written as

j  =  –  e · D ·
dn

dx

We thus can always equate

D  = 
µ · kT

e

And this is the Einstein-Smoluchowski relation.
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Substituting this in the equation above, we get exactly the same equation as in the first derivation

n · µ · Ex  =  D ·
dn

dx

The consideration of the currents caused by the chemical force, however, is much more general. The arguments used
would also apply for the case where ECryst is not constant and we will come back to this when discussing
heterojunctions or graded semiconductors.
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