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 Thou shall live in interesting times!
Chinese curse

 

1. Introduction

1.1 Scope of the Course

1.1.1 Goals and Contents

This course tries to do something next to impossible: Give a review of all important or interesting semiconductor
materials, products and technologies, excluding only Silicon as far as it is used for microelectronics! Moreover, the
course aspires to go into some detail with respect to the fundamental material properties of semiconductors, i.e. it
requires a heavy dose of semiconductor physics.
The course is intended for Materials Science and Engineering students pursuing a Master's degree. A number of
problems come to mind:

One term is surely not sufficient to cover this field adequately. We will therefore focus on whatever seems most
interesting for the last third of the course (and then, maybe, finish the still open chapters).
All semiconductor physics text books above a very basic level invariably assume that the reader is thoroughly
familiar with quantum theory and at least some solid state physics and thermodynamics. This is not true for the
average Materials Science and Engineering student with a Bachelor degree. We will try to cope as best as we can.
There is no book (as far as I can tell after searching around for a while) that comes even close to what is intended
here, so you must be content with this script.

Fortunately, there are some helpful circumstances, too:

By the time they take this course, all materials science students should be well acquainted with Si technology as
far as it relates to microelectronics, with solid state physics in general, and with classical thermodynamics.
Some, if not most, also took the electives "Quantum theory" and "Statistical Thermodynamics" - that will help.

Moreover, all Materials Science Bachelors in Kiel had a heavy dose of basic semiconductor physics and devices in
their 4th semester where they had to take "Introduction to Materials Science II".

What will be the content? Who knows before actually doing it? What will be attempted can be seen in the link, which
gives a reasonably detailed outline of the intentions.

What will be really presented will depend on how fast we will be able to move and on the questions and problems
coming while teaching the course.

All things considered, the general background should be sufficient to understand the basic concepts and to translate
that understanding to an appreciation of general semiconductor physics, products and technology. In summary:

Let's go!
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1.1.2 Relation to Other Courses

The graduate course "Semiconductors" interacts with several other courses in the materials science curriculum. A
certain amount of overlap is unavoidable.
Of course, "semiconductors" relates to the truly basic courses in materials science, like thermodynamics, analytics, or
solid state physics (all of which are required for all students) - it simply relies on the stuff covered there.

Below is a list of courses that are electives (at least for some), but have some relation to "Semiconductors".

 
Electronic Materials (Werkstoffe der Elektrotechnik und Sensorik I; Prof. Föll) or its successor
Advanced Materials B..

Required for Masters students.

Focuses on a short introduction to Silicon technology and materials but covers mainly dielectric and magnetic
materials.

Si Technology I + II (Prof. Wagner)

Elective for Master students.

Covers Si and Si technology (with emphasize on MEMS), which is not included in this course.

Quantum Theory for Materials Scientists (Dr. Carstensen)

Elective for all students

A must if you really want to understand semiconductors

Thin Solid films I (Various lecturers)

Elective for Masters students

Perfectly complements the technological part of "Semiconductors".

Defects in Crystals (Prof. Föll)

Elective for all students

Most semiconductors except Si are plagued by crystal defects, so some basic knowledge of crystal lattice defects
is helpful but not really necessary.
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1.1.3 Required Background Knowledge

Mathematics

Advanced Math as taught in all undergraduate courses should be enough. You should not be intimidated by long
equations and have a feeling for the important parts in mathematical deductions.

General Physics and Chemistry

A general undergraduate level of basic physics should be sufficient. You should be comfortable with units and
conversion between units. Not much chemistry will be needed, but you should know, e.g., that KOH is a base and
HF an acid and that SiO2 is quartz which is pretty stable in most chemicals, and so on.

General Materials Science

You must be comfortable with all crystallographic notions and the reciprocal lattice. Thermodynamics, especially in
its statistical form as expressed by distribution functions, is a must. Some preliminary understanding of
semiconductors - conductivity, holes and electrons, junction in general - is necessary.

Quantum Theory

A good understanding of quantum theory up to the level of the free electron gas model is essential.

Thermodynamics

A working knowledge of classical thermodynamics is helpful. Simple statistical thermodynamics as expressed by
distribution functions is a must. Knowing in detail what "chemical potential" means would be nice, but it's not really
required.
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1.1.4 Organization

The course will consist of two parts:

A regular lecture, lasting 90 minutes, once a week

Exercises, which may be held as follows:

As regular exercises, i.e. solving problems.
As a seminar , where a team of two students prepares and delivers a 45 min. lecture on a specific subject.
As a mixture, i.e. first half with regular exercises, second half with seminar.

All information concerning the running term (including details like schedules, grading, exams, etc.) can be found in a
separate document via the link.
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2. Semiconductor Physics

2.1 Basic Band Theory

2.1.1 Essentials of the Free Electron Gas

This course requires that you must be familiar with some solid state physics including a working knowledge of
thermodynamics and quantum theory.

The free electron gas model is a paradigm for the behavior of electrons in a crystal, you should be thoroughly
familiar with it.
In case of doubt, refer to the Hyperscript "MaWi II" – which, however, is in German.

In the following, the essentials of the model are repeated – briefly, without much text. If you have serious problems
with the topic already here, you do indeed have a problem with this course!

The Energy Levels of an Electron in a Constant Potential

The free electron gas model works with a constant potential. This is, of course, a doubtful approximation; essentially
only justified because it works – up to a point.

Approximations: Constant potential U = U0 = 0 within a crystal with length L in all directions; only one electron is
considered.
The true potential outside the crystal will turn out to be irrelevant due to periodic boundary conditions (see below).

The major formulas and interpretations needed are:

Time independent one-dimensional Schrödinger equation :

–
2

2me





∂2ψ(x,y,z)

∂ x2
+

∂ 2ψ(x,y,z)

∂ y2
+

∂ 2ψ (x,y,z)

∂ z2





 + U(r) · ψ(x,y,z )   = E · ψ(x,y,z)

         = 0   

 = h "bar" = h/2π = Plancks constant/2π
me = electron mass
ψ = wave function
E = total energy = kinetic energy + potential energy. Here it is identical to the kinetic energy because the potential
energy is zero.

Potential U( x) as defined above; i.e. U(x) = U0 = const = 0 for 0  ≤  x  ≤   L. (Remember that L is the macroscopic
size of the crystal.)

For the (potential) energy, there is always a free choice of zero point; here it is convenient to put the bottom of the
potential well at zero potential energy. We will, however, change that later on.

Boundary conditions: Several choices are possible! Here, we use periodic conditions (also called Born–von
Karman conditions), leading to a so-called supercell:

ψ(x + L)  = ψ(x)

Solution (for 3-dimensional case)  
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ψ  = 




1

L





3/2
· exp (i · k · r)  

r  = position vector
  = (x, y, z)
   
k  = wavevector
  = (kx, ky, kz)
   

kx  = ± nx · 2 π/L
ky  = ± ny · 2π /L
kz  = ± nz · 2π/L
   

nx , ny, nz  = quantum numbers
  = 0, 1, 2, 3, ...
   
i  = (–1)1/2

A somewhat more general form for crystals with unequal sides can be found in the link.

There are infinitely many solutions, and every individual solution is selected or described by a set of the three quantum
numbers nx , ny, nz . The solution ψ describes a plane wave with amplitude (1/L)3/2 moving in the direction of the wave
vector k .
Next, we extract related quantities of interest in connection with moving particles or waves:

The wavelength λ of the "electron wave" is given by

λ  = 
2π

|k|
 = 

2π

k

The momentum p of the electron is given by

p  =  · k

From this and with m = electron mass we obtain the velocity v of the electron to be

v  = 
p

me

 = 
 · k

me

The numbers nx, ny, n z are quantum numbers ; their values (together with the value of the spin) are characteristic for
one particular solution of the Schrödinger equation of the system. A unique set of quantum numbers (alway plus one of
the two possibilities for the spin) describes a state of the electron

Since these quantum numbers only appear in the wave vector k, one often denotes a particular wave function by
indexing it with k instead of nx, y, z because a given k vector denotes a particular solution or state just as well as
the set of the three quantum numbers.

ψnx, ny, nz(x,y,z)  = ψk(x,y,z)  =  ψk(r)

In other words, in a formal, more abstract sense we can regard the wave vector as a kind of vector quantum number
designating a special solution of the Schrödinger equation for the given problem.

Since in the present case the total energy E is identical to the kinetic energy Ekin = ½mev 2 = ½p2/me, we have

E  =  

2 · k2

2me
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We now have expressed the total energy as a function of the wave vector. Any relation of this kind is called a
dispersion function. Spelt out we have

E  = 

2

2me

  ·  




2 π

L





2
  ·  nx2   + ny2  + nz2 



This is the first important result: There are only discrete energy levels for the electron in a box with constant potential
that represents the crystal.

This result (as you simply must believe at this point) will still be true if we use the correct potentials, and if we
consider many electrons. The formula, however, i.e. the relation between energy and wave vectors may become
much more complicated.

The boundary conditions chosen and the length L of the box are somewhat arbitrary. We will see, however, that they do
not matter for the relevant quantities to be derived from this model.

 

Density of States
  

Knowing the energy levels, we can count how many energy levels are contained in an interval ∆E at the energy E . This
is best done in k-space or phase space.
 

For the free electron gas, in phase space a surface of constant energy is
a sphere, as schematically shown in the picture.

Any "state", i.e. solution of the Schroedinger equation with a specific k,
occupies the volume given by one of the little cubes in phase space,
corresponding to the discrete states just discussed.

The number of little cubes fitting inside the sphere at energy E thus is the
number of all electronic states ψ up to E.

Since every state (characterized by its set of quantum numbers nx, ny,
nz ) can accommodate 2 electrons (one with spin up, one with spin
down), the total number of electrons that can occupy states up to E is
twice the number of little cubes; let this number (that includes the spin
degeneracy) be Ns (E).

 
Looking just at the energy, it is clear that at higher energies there are more states available. Counting the number of
little cubes just in an energy interval E, E + ∆E corresponds to taking the difference of the numbers of cubes
contained in a sphere with "radius" E + ∆ E and E.

We thus obtain the density of states D(E) as

D(E)  = 
1

V
 · 

Ns(E + ∆
E) – Ns(E)

∆E

 =
 

1

V

 
· 

dNs

dE

 =
  

1

L3
 · 

dNs

dE

Note that D(E) is a density both with respect to E and to V = L3 (= volume of the crystal).

The final formula is

D(E)  =  
1

L3
  · 

dNs

dE
 =  

1

2π 2





2me

2





3/2
 · E 1/2

The derivation of this formula and more to densities of states (including generating some numbers) can be found in
the link.

Some important points are:
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D(E) is proportional to E1/2.
For different (but physically meaningful) boundary conditions we obtain the same D (see the exercise 2.1
below).
The artificial length L disappears because we are only considering specific quantities, i.e. volume densities.
D is kind of a twofold density: It is first the density of energy states in an energy interval and second the
(trivial) density of that number in space .

If we fill the available states with the available electrons at a temperature of 0 K (since we consider the free
electrons of a material this number will be about 1 [or a few] per atom and thus is principally known) starting from E
= 0, we find a special energy called Fermi energy EF at the value where the last electron finds its place.

In order to get (re)acquainted with the formalism, we do two simple exercises:

Exercise 2.1-1
Solution of the free electron gas problem with fixed

boundary conditions

Exercise 2.1-2
Density of states as a function of dimensionality

  

Carrier Statistics
  

We have the number of energy states for a given energy interval and want to know how many (charge) carriers we will
find in the same energy interval in thermal equilibrium . Since we want to look at particles other than electrons too, but
only at charged particles, we use the term "carrier" here.
In other words, we want the distribution of carriers on the available energy levels satisfying three conditions:

The Pauli exclusion principle: There may be at most 2 carries per energy state (one with spin "up", one with spin
"down"), not more.
The equilibrium condition: Minimum of the appropriate thermodynamic potential, here always the free
Enthalpy G (also called Gibbs energy).
The conservation of particles (or charge) condition; i.e.constant number of carriers regardless of the distribution.

The mathematical procedure involves a variation principle of G. The result is the well-known Fermi –Dirac distribution
f(E,T):

f(E,T) = probability for occupation of (one!) state at E for the temperature T

f(E, T)  = 

1

exp 


E – EF

kT


  +  1

If you are not very familiar with the distributions in general or the Fermi distribution in particular, read up on it in the
(German) link.

This is the "popular" version with the Fermi energy EF as a parameter. In the "correct" version, we would have the
chemical potential μ instead of EF.
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Since the Fermi energy is a quantity defined independently of the equilibrium considerations above, equating EF with
μ is only correct at T = 0 K. Most textbooks emphasize that small differences may occur at larger temperatures,
but do not explain what those differences are. We, like everybody else, will ignore these fine points and use the
term "Fermi Energy" without reservations.
In all experience, many students (and faculty) of physics or materials science have problems with the concept of the
"chemical potential". This is in part psychological (we want to do semiconductor physics and not chemistry), but
mostly just due to little acquaintance with the subject. The link provides some explanations and examples which
might help.

The Fermi-Dirac distribution has some general properties which are best explained in a graphic representation.

It contains a convenient definition of the Fermi energy: The energy where exactly half of the available levels are
occupied (or would be occupied if there would be any!) is the Fermi energy:

f(E = EF)  = 
1

2

The width of "soft zone" is ≈ 4 kT = 1 meV at 3 K, and 103 meV at 300K.

For E – EF >> kT the Boltzmann approximation can be used:

fB(E,T)  ≈  exp 
–

E – EF

kT 




In this case the exclusion principle is not important because there are always plenty of free states around – the
electrons behave akin to classical particles.

This leads to the final formula for the incremental number or density of electrons, dn, in the energy interval E, E + ∆E
(and, of course, in thermodynamic equilibrium).

In words: Formula

Density of electrons in the energy interval E, E +
∆E =

density of states times probability for occupancy
times energy interval

dn  = D(E) · f(E, T) · dE

This is an extremely important formula, which is easily generalized for almost everything. The number (or density) of
something is given by the density of available places times the probability of occupation.

This applies to the number of people found in a given church or stadium, the number of photons inside a "black
box", the number of phonons in a crystal, and so on.
The tricky part, of course, is to know the probabilities or the distribution function in each case. However, if we do
not consider church goers or soccer fans, but only physical particles (including electrons and holes, but also
"quasi-particles" like phonons, excitons, ...), there are only two distribution functions (and the Boltzmann
distribution as an approximation): The Fermi-Dirac distribution for Fermions, and the Bose-Einstein distribution for
Bosons. Mother nature here made life real easy for physicists.

Since all available electrons must be somewhere on the energy scale, we always have a normalization condition for the
total electron density n:
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n  = 

∞
⌠
⌡
0

D(E) · f(E,T) · dE

  
Questions

Quick Questions to 2.1.1
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2.1.2 Diffraction of Electron Waves

Note: It is too tiresome to underline all vectors, and we will simply stop doing it except if it is absolutely necessary.

The Reciprocal Lattice

Electron waves like all waves experience diffraction effects in periodic structures like crystals. This is best described in
the reciprocal lattice of the crystal in question. There are several ways to construct a reciprocal lattice from a space
lattice.

Remember that a lattice – in contrast to a crystal – is a mathematical construct. A lattice becomes becomes a
crystal by putting a set of atoms – the base of the crystal – at every lattice point.
There are 14 different kinds of lattices – the Bravais lattices – with different symmetries that are sufficient to
describe the lattice of any crystal.
If you are unsure about this topic, refer to the appropriate chapter in "Introduction to Materials Science I" (in
German) or in "Defects" (in English)

Lets look at three definitions of the reciprocal lattice, which are – of course – all equivalent but at different levels of
abstraction. This is elaborated in the link.

1. The reciprocal lattice is the Fourier transform of the space lattice.

2. The reciprocal lattice with an elementary cell (EC ) as defined by the base vectors b1,2,3 is obtained from the
space lattice as defined by its base vectors a1,2,3 by the equations

  

b1 = 2π
a2× a3

ax × (ay· az)
b2 = 2π

a3× a1

ax × (ay· az)

b3 = 2π
a1× a2

ax × (ay· az)
 

ax × (ay· az)  = volume V of EC

3. The base vectors of the reciprocal lattice can be constructed by drawing vectors perpendicular to the three {100}
planes of the space lattice and taking their length as 2π/dhkl with dhkl = spacing between the lattice planes with
Miller indices {hkl}.
You will, of course, never confuse the spacing between lattice planes with the spacing between crystal planes, i.e.
sheets of atoms, which may be something different.
 

Bragg Condition

If a wave impinges on a crystal – and it doesn't matter if it is an electromagnetic wave, e.g. X-rays, or an electron, or
neutron "wave" – it will be reflected at a particular set of lattice planes {hkl} characterized by its reciprocal lattice vector
g only if the so-called Bragg condition is met.

Let the wave vector of the incoming wave be k, the wave vector of the reflected wave is k'. The Bragg condition
correlates the three vectors involved – k , k', and g – in the simplest possible form:

k  –  k'  = g

There is no simpler relation correlating three vectors – mother nature again makes life as easy as possible for us!

This Bragg condition is easily visualized:
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If, and only if the three vectors involved form a closed triangle, is the Bragg condition met. If the Bragg condition is
not met, the incoming wave just moves through the lattice and emerges on the other side of the crystal (neglecting
absorption).

So far we assumed implicitly that the diffraction (or, in more general terms, the scattering ) of the incoming wave is
elastic, i.e. the magnitude of k' is identical to that of k, i.e. |k| = |k'| – which means that the diffracted wave has the
same momentum, wavelength and especially energy as the incoming wave.

This is not necessarily implied by Bragg's law – the equation k – k ' = g can also be met if k' differs from k by a
reciprocal lattice vector; i.e. if scattering with a change of energy takes place. This will become important later.
 

Brillouin Zones
  

In X-ray analysis of crystals we often deal with an (idealized) situation were one well-defined plane wave with fixed
wavelength impinges on a crystal, and the question is which set of lattice planes will reflect the one incoming beam.

This question can be answered most easily in a qualitative way by a geometric construction called the Ewald
construction which can be found in the "Introduction to Materials Science II" Hyperscript.

However, if we consider the diffraction effects occurring to the free electrons contained in the crystal, we are looking at a
(quasi) continuum of wave vectors: We have all possible directions and many wavelengths.

The question is now a bit different: We want to know which particular wave vectors out of many (an infinite set, in
fact) meet the Bragg condition for a given crystal lattice plane.
This question can be answered most easily and semi-quantitatively by a geometric construction called the Brillouin
construction. Lets look at it in a simplified two-dimensional form.

If we construct Wigner–Seitz cells in the reciprocal lattice as shown by the pink lines, all wave vectors ending on
the Wigner-Seitz cell walls will meet the Bragg condition for the set of lattice planes represented by the cell wall.

The Wigner–Seitz cells form a nested system of polyhedra which can be numbered according to size. These cells are
called Brillouin zones ( BZ); the smallest one is called the 1. BZ, the next smallest one the 2. BZ, and so on.

All wave vectors that end on a BZ wall will fulfill the Bragg condition and thus are diffracted. Of course, the origin
must be at the center of that BZ.
Wave vectors completely in the interior of the 1. BZ, or in between any two BZs, will never get diffracted; they move
pretty much as if the potential would be constant, i.e. they behave very close to the solutions of the free electron
gas.

Of course, if we talk about diffraction in a crystal, we assumed implicitly that the potential is no longer constant, but
periodic with the crystal.

The statement above is thus not trivial, but a first important conclusion from diffraction geometry alone: We have
good reasons (albeit no ironclad justification) to believe that the free electron gas model is a decent approximation
for electrons with wave vectors not ending on (or close to) a Brillouin zone edge of the crystal in question.
We thus only have to consider what happens to the electrons with wave vectors on or close to a BZ edge. In which
properties do they differ from electrons of the free electron gas model?
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Questions
Quick Questions to 2.1.2
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2.1.3 Energy Gaps and General Band Structure

Electron waves with wave vectors on or near a BZ edge are diffracted; all others aren't.

This means simply that electrons with wave vectors near or at a BZ edge – let's call them kBZ electrons – feel the
periodic potential of the crystal while the others do not (in a first approximation).
In other words, kBZ electrons interact with the crystal, and this must express itself in their energies.

Origin of Energy Gaps

Intuitively, we expect that "normal" electrons, not feeling any diffraction, pretty much obey the relation for the total
energy E as before:

E  = Ekin  = 
p2

2m 
 = 

( k)2

2m 

For kBZ electrons, however, we must expect major modifications.

What we will get in the most general terms is a splitting of the energy value if a given k ends exactly at the Brillouin
zone edge, i.e. for a kBZ electron. Instead of E(k) = ( k)2/2me we obtain.

E(k BZ)  = 
( kBZ)2

2m
  ±  ∆E

In words: Electrons at the BZ edge can have two energies for the same wave vector and thus state. One value is
somewhat lower than the free electron gas value, the other one is somewhat higher.

Energies between these values are unobtainable for any electron – there is now an energy gap in the E = E(k) relation
for all k vectors ending on a Brillouin zone wall.
The time-honored way to visualize this energy gap is to look at a one-dimensional crystal – i.e. a chain of atoms ,
periodically spaced with the distance a.

Since in this case, we have for the electron wave meeting the Bragg condition ...

k'  = –k  = –kBZ

... the electron wave will be reflected back on itself. Therefore, the solutions of the Schrödinger equation will be
described by the possible superpositions of the two waves, and there are two possibilities to do that:

ψ+  = 




1

2L





1/2
  · exp (ikBZx)  +  exp (–ikBZx) 



ψ–  = 




1

2L





1/2
  · exp (ikBZx)  –  exp (–ikBZx) 



For the first Brillouin zone, we have g1 = 2 π/a = k – k' = 2kBZ, and so k BZ = π/a. Since this can be easily
generalized for higher Brillouin zones, the same consequences will occur also there. To understand the basics,
however, it is sufficient to consider just the edge of the first Brillouin zone.

Both solutions are no longer propagating plane waves with ψ · ψ* = const. throughout the crystal but standing waves ...
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|ψ +|2  = 
2

L
· cos2  





πx

a





|ψ –|2  = 
2

L
· sin2  





πx

a





... with the maxima being at the coordinates of the atoms for the ψ+ solution and between the atoms for the ψ–

solution.
In the first case the potential energy of the electrons is lowered , in the second case it is raised – there is an energy
gap!

Note that now a potential energy is involved, but only because we now implicitly assumed that the potential is no longer
constant.

While this is a relatively painless way to envision the occurrence of an energy gap, the three-dimensional case needs a
few more considerations.

Waves with k ≈ kBZ, while diffracted, do not have to directly run back in themselves – after some more reflections,
however, they will.
This leads to a splitting of the energy for all positions on the Brillouin zone edges; the amount of splitting, however,
may differ .
A general relation yields for the energies of the kBZ electron waves

E(k BZ)  = 
( kBZ)2

2m
 ±  | U(g)|

With U(g) = Fourier component of the periodic potential for the reciprocal lattice vector g relevant for the kBZ vector
considered.
 

Representation of Energy Gaps and Band Structures
  

Bearing this in mind, we now can construct the E(k) diagram in a principal way:

In different directions we still would have an energy gap, but at different positions on the
energy axis and with a different width. Nevertheless, this is already the first step to
understand the electronic band structure of crystalline solids.
That is about as far as the free electron gas model with diffraction added (and therefore
by necessity some unspecified periodic potential) will get us.

For more insights we will actually have to solve the Schrödinger equation for some kind of periodic potential. This is
difficult, even for very simple (unrealistic) periodic potentials; cf. the link.

For this we first need a halfway realistic potential – e.g. for a Si or a GaAs crystal –
which we then use in the Schrödinger equation. The solutions will depend on the
precise kind of potential and, as we must expect, they will not be easy to find (or even
to express in closed form).
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However, since the potential is periodic, which means it doesn't matter if we look at it at
r or at r + R with R = any translation vector of the lattice – it always looks the same –
we may confidently expect that the solutions mirror somehow this property. After all, it
should not matter much either, at which crystallographically equivalent crystal positions
we look at the electrons.

This is exactly what the celebrated Bloch theorem asserts: No matter what kind of periodic potential is plucked into the
Schrödinger equation, the solutions must have certain properties which can be specified in a very general way.

We will deal with this in the next subchapter.
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2.1.4 Periodic Potentials and Bloch's Theorem

In the most simplified version of the free electron gas, the true three-dimensional potential was ignored and
approximated with a constant potential (see the quantum mechanics script as well) conveniently put at 0 eV.

The true potential, however, e.g. for a Na crystal, is periodic and looks more like this (including some electronic
states):

Semiconducting properties will not emerge without some consideration of the periodic potential – we therefore have to
solve the Schrödinger equation for a suitable periodic potential. However, this is much easier said than done: There are
several ways to do this (for real potentials always numerically), but they are all mathematically rather involved – and,
thus, beyond the scope of this lecture.

Luckily, as stated before, it can be shown that all solutions must have certain general properties. These properties
can be used to make calculations easier – as well as to obtain a general understanding of the the effects of a
periodic potential on the behavior of electron waves.
The starting point is a potential V(r) determined by the crystal lattice that has the periodicity of the lattice, i.e.

V(r)  = V(r + T)

With T = any translation vector of the lattice under consideration.

We then will obtain some wavefunctions ψ(r) which are solutions of the Schrödinger equation for V(r). In addition,
these wavefunctions have to fulfill the boundary conditions, since we are still dealing with a kind of "particle in a box"
problem – the electrons are confined inside the crystal.

The Bloch Theorem

The Bloch theorem in essence formulates a condition that all solutions ψ(r), for any periodic potential V(r) whatsoever,
have to meet. In one version it ascertains

ψ(r)  = u(r) · exp (i · k · r)

With k = any allowed wave vector for the electron that is obtained for a constant potential, and u(r) = some
functions with the periodicity of the lattice, i.e.

u(r + T)  = u(r)

Any wavefunction meeting this requirement we will henceforth call a Bloch wave.

As before, we choose periodic boundary conditions; this ensures that no restiction on the translation vectors T
needs to be considered.

The Bloch theorem is quite remarkable, because, as said before, it imposes very special conditions on any solution of
the Schrödinger equation, no matter what the form of the periodic potential might be.

We notice that, in contrast to the case of the constant potential, so far, k is just a wave vector in the plane wave
part of the solution. Due to the periodic potential, however, its role as an index to the wave function is not the same
as before – as we will shortly see.

Bloch's theorem is a proven theorem with perfectly general validity. We will first give some ideas about the proof of this
theorem and then discuss what it means for real crystals. As always with hindsight, Bloch's theorem can be proved in
many ways; the links give some examples. Here we only look at general outlines of how to prove the theorem:

It follows rather directly from applying group theory to crystals. In this case one looks at symmetry properties that
are invariant under translation.
It can easily be proved by working with operator algebra in the context of formal quantum theory mathematics (see
the quantum mechanics script again).
It can be directly proved in simple ways – but then only for special cases or with not quite kosher "tricks".
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It can be proved (and used for further calculations) by expanding V (r) and ψ(r) into a Fourier series and then
rewriting the Schrödinger equation. This is a particularly useful way because it can also be used for obtaining
specific results for the periodic potential. This proof is demonstrated in detail in the link, or in the book of Ibach and
Lüth.

Bloch's theorem can also be rewritten in a somewhat different form, giving us a second version:

ψ (r + T)  = ψ (r) · exp(ikT)

This means that any function ψ(r) that is a solution to the Schrödinger equation of the problem, differs only by a
phase factor exp(ikT) between equivalent positions in the lattice.
This implies immediately that the probability of finding an electron is the same at any equivalent position in the
lattice, exactly as we expected, because

|ψ(r + T)|2  = |ψ(r )|2  · |exp(ikT)|2  = |ψ (r)|2

This is so because |exp(ikT)|2 = 1 for all k and T.

That this second version of Bloch's theorem is equivalent to the first one may be seen as follows:

If we write the wave function in the first form ψ (r) = u(r) · exp(ikr) and consider its value at an equivalent lattice
position r + T we obtain

ψ (r + T)  = u(r + T)  · exp [ik · (r + T)]   = u( r) · exp (ikr)  · exp (ikT)  = ψ(r ) · exp(ikT)
         
  =  u(r )   =  ψ (r)   q.e.d.

Bloch's theorem has many more forms and does not only apply to electrons in periodic potentials, but for all kinds of
waves in periodic structures, e.g. phonons. However, we will now consider the theorem to be proven and only discuss
some of its implications.

Most importantly, we will now clarify what index to apply to the wave function ψ(r) and, thus, also to its lattice-
periodic part u(r).

 

Implications of the Bloch Theorem
  

One difference to the constant potential case is most crucial: If we know the wavefunction for one particular k value, we
also know the wavefunctions for infinitely may other k values, too.

This follows from the fact that in the "second version" of the Bloch theorem, ψ(r + T) = ψ(r) · exp(ikT), the vector k
is not unique, since for any reciprocal lattice vector g it holds that exp(igT) = 1. Hence, when k is replaced by k' =
k + g, the Bloch theorem is also fulfilled:

ψ(r + T)  = ψ(r) · exp[i(k + g) T]  = ψ ( r) · exp(ikT)

Obviously it is not clear which reciprocal space vector, k or k', is to be associated with this Bloch wave; this is why
the index k was omitted so far. (That this non-uniqueness also holds for u(r) can be seen from its Fourier series
representation; cf. the relevant proof of the Bloch theorem.)
The deeper reason behind this property is that, similar to E being an eigenvalue of the Hamilton operator H in the
equation Hψ = Eψ , the exponential expressions exp(ikT) are the eigenvalues of the translation operator T in the
equation Tψ = exp(ikT)ψ (cf. the relevant proof of the Bloch theorem), and these eigenvalues do not change when
k is replaced by k' = k + g.

Therefore, in principle not a single vector k is to be attributed as an index to a specific wavefunction, but all k' = k + g.

All these points in k-space are equivalent, because for any reciprocal lattice vector g it holds that ψk + g(r) = ψk (r).

On the other hand, this permits to restrict the k vector to the first Brillouin zone, because any k' not in the first
Brillouin zone can always be written as k' = k + g, with k now being in the first Brillouin zone.
Keeping this in mind, we can now simply write ψ k(r); further implications are discussed below.

In general, a Bloch wave ψk(r) = uk(r) · exp(ikr) can be understood as a lattice-peridocally modulated plane wave.

One way of looking at this "first version" of the Bloch theorem is to interprete the lattice-periodic function uk(r) as a
kind of correction factor that is used to generate solutions for periodic potentials from the simple solutions for
constant potentials.

Semiconductors - Script - Page 20

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/basics/m2_1_2.html
http://www.tf.uni-kiel.de/matwis/amat/semi_en/metamod/books_students.html#_iba
http://www.tf.uni-kiel.de/matwis/amat/semi_en/metamod/books_students.html#_iba
http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/basics/m2_1_2.html
http://www.tf.uni-kiel.de/matwis/amat/q_mech/kap_1/backbone/r_se24.html


We then have good reasons to assume that uk(r) for k vectors not close to a Brillouin zone edge will only be a
minor correction, i.e. uk( r) should be close to 1, then.

But in any case, the quantity k, while still being the wave vector of the plane wave that is part of the Bloch wave function
(and which may be seen as the "backbone" of the Bloch functions), has lost its simple meaning: Besides not being
unique, there are explicit reasons why it can no longer be taken as a direct representation of the momentum p of the
electron via p = k, or of its wavelength λ = 2π/k:

The momentum of the electron moving in a periodic potential, having the wave function ψk(r) = uk(r) · exp(ikr), can
be calculated from –i ψk( r), thus it is not only related to k but also to uk(r), which represents the influence of
the lattice. As an example, for the standing waves resulting from (multiple) reflections at the Brillouin zone edges
the momentum of the electron is actually zero (because the velocity is zero), while k is not.
There is no unique wavelength to a plane wave modulated with some arbitrary periodic function. Its Fourier
decomposition can have any spectrum of wavelengths, so which is the one to be relevant for being associated with
k?

To make this clear, sometimes the vector k for Bloch waves is called the "quasi wave vector".

Nevertheless, k is a quantum number related to the translational symmetry of the lattice. Thus, instead of associating it
with the momentum of the electron which is related to the translational symmetry of free space, we may identify the
quantity k with the so-called crystal momentum P, being relevant for the movement of the electron in the periodic
lattice.

The crystal momentum P is something like the combined momentum of crystal and electron. While not being a
"true" momentum (which should be expressible as the product of a distinct mass and a velocity), it still has many
properties of momenta, in particular it is conserved during all kinds of processes (as we will see later on).
This is a major feature for the understanding of semiconductors, as we will see soon enough!

Only if V = 0, i.e. if there is no periodic potential, then the crystal momentum is equal to the bare electron
momentum; i.e. then the part of the crystal is zero.

  

Reduced- and Repeated-Zone Schemes
  

We now consider the far-reaching consequences of the fact that ψk + g(r ) = ψk(r) for the energy value(s) associated
with that wavefunction; with g = arbitrary reciprocal lattice vector.

Writing this as ψ(k + g, r) = ψ(k, r) and taking k as a continuous variable, this means that ψ(k , r) is periodic in k-
space.
As a solution of the Schrödinger equation for the system, associated with ψ(k , r) there is a specific energy E( k)
which necessarily is also periodic:

E(k + g)  = E( k)

This is a major insight; it means that any reciprocal lattice point can serve as the origin of the E(k) function.

Let's visualize this for the case of an infinitesimaly small periodic potential – we have the periodicity, but not a real
potential. The E(k) function then is practically the same as in the case of free electrons, but starting at every point
in reciprocal space:

As a consequence, we now have many energy values for one given k, and in particular all possible energy values
are contained within the first Brillouin zone, i.e. between –0.5g1 and +0.5g1 in the picture, which in total is an
example of a repeated-zone scheme because the same holds for all Brillouin zones.

Semiconductors - Script - Page 21



It thus is sufficient to consider only the first Brillouin zone in graphical representations of the E(k) function – it contains
all the information available about the system.

This is called a reduced representation of the band diagram (or reduced-zone scheme ), which may look like
this:

The branches outside the 1. BZ have been shifted ("folded back") into the 1. BZ, i.e. translated by the appropriate
reciprocal lattice vector g.
To make band diagrams like this one as comprehensive as possible, the symmetric branch on the left side is
omitted; instead, the band diagram in a different direction in reciprocal space is shown.

Altogether, this now looks like a specific electron (i.e., with a specific k) could have many energies all at once – which
is, of course, not the case .

Different energies, formerly distinguished by different k-vectors, are still different energies, but in the first Brillouin
zone they are distinguished by considering them to form different bands .
Every energy branch coming from larger k-vectors carries an index n denoting the band ; this index specifies the
original Brillouin zone that this branch originated from.
Formally, in the first Brillouin zone we have the function En (k) associated with the Bloch wave ψn,k(r ) .

The identical construction, but now for the energy functions of a periodic potential as given before, now looks like this:

We now have band gaps – regions with unattainable energies – in all directions of the reciprocal lattice.

A numerical example for the Kroning–Penney Model is shown in this link.

What does this mean for a particular electron, say one on the lowest branch of the blue diagram with the wave vector
k1? It has a definite energy E associated with it.

But it also could have larger energies – all the values obtained for the same k but in higher branches of the band
diagram.
For a transition to the next higher branch the energy ∆E1 is needed. It has to be supplied from the outside world.

After the transition the electron has now a higher energy, but the wave vector is the same. But wait, in the reduced
band diagram, we simply omitted a reciprocal wave vector, so its wave vector is actually k1 + g. If we index the
situation after the transition with "2", before with "1", we have the following equations:
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E2  = E1 + ∆E
   

k2  = k1 + g
   

|k1|   ≠ |k2|

This is simply Braggs law, but now for inelastic scattering, where the magnitude of k may change – but only by a
specified amount tied to a reciprocal lattice vector.
Since we interpreted k as crystal momentum , we may consider Braggs law to be the expression for the
conservation of momentum in crystals.

The reduced band diagram representation thus provides a very simple graphical representation of allowed transitions
of electrons from one state, represented by (E1, k1), to another state (E2 , k2 ): the states must be on a vertical line
through the diagram, i.e. straight up or down.
An alternative way of describing the states in the spirit of the reduced diagram is to use the same wave vector k for
all states and a band index for the energy. The transition then goes from (En, k) to (Em, k ) with n, m = number of
the energy band involved.

The possibility of working in a reduced band diagram, however, does not mean that wave vectors larger than all possible
vectors contained in the 1. BZ are not meaningful or do not exist:

Consider an electron "shot" into the crystal with a high energy and thus a large k – e.g. in an electron microscope.
If you reduce its wave vector by subtracting a suitable large g vector without regard to its energy and band number,
you may also reduce its energy – you move it, e.g., from a band with a high band number to a lower one. While this
may happen physically, it will only happen via many transitions from one band to the next lower one – and this
takes time!
Most of the time in normal applications the electron will keep its energy and its original wave vector. And it is this
wave vector you must take for considering diffraction effects! An Ewald (or Brillouin) construction for diffraction will
give totally wrong results for reduced wave vectors – think about it!
 

If you feel slightly (or muchly) confused at this point, that is as it should be. Bloch's theorem, while relatively
straightforward mathematically, is not easy to grasp in its implications to real electrons. The representation of the
energy–wave vector relationship (the dispersion curves) in extended or reduced schemata, the somewhat unclear role of
the wave vector itself, the relation to diffraction via Bragg's law, the connection to electrons introduced from the outside,
e.g. by an electron microscope (think about it for minute!), and so on, are difficult concepts not easily understood at the
"gut level".

While it never hurts to think about these questions, it is sufficient for our purpose to just accept the reduced band
structure scheme and its implications as something useful in dealing with semiconductors – never mind the "small
print" associated with it.
However, if you want to dig deeper: All these effects that are difficult to grasp are to some extent rooted in the formal
quantum mechanics behind Bloch's theorem. It has to do with eigenvectors, eigenvalues and commutation of
operators; so, if you know about that, all these effects come rather naturally.
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2.1.5 Band Structures and Standard Representations

Real crystals are three-dimensional and we must consider their band structure in three dimensions, too.

Of course, we must consider the reciprocal lattice, and, as always if we look at electronic properties, use the
Wigner-Seitz cell (identical to the 1st Brillouin zone) as the unit cell.
There is no way to express quantities that change as a function of three coordinates graphically, so we look at a
two dimensional crystal first (which, incidentally, do exist in semiconductor physics).

The qualitative recipe for obtaining the band structure of a two-dimensional lattice using the slightly adjusted parabolas
of the free electron gas model is simple:

Construct the parabolas along major directions of the reciprocal lattice, interpolate in between, and fold them back
into the first Brillouin zone. How this can be done for the free electron gas is shown in an illustration module.
An example – taken from "Harrison" – may look like this:

The lower part (the "cup") is contained in the 1st Brillouin zone, the upper part (the "top") comes from the second
BZ, but is now folded back into the first one. It thus would carry a different band index. This could be continued ad
infinitum; but Brillouin zones with energies well above the Fermi energy are of no real interest.
The lower part shows tracings along major directions. Evidently, they contain most of the relevant information in
condensed form. It is clear, e.g., that this structure has no band gap.

It would be sufficient for most purposes to know the En(k) curves – the dispersion relations – along the major directions
of the reciprocal lattice (n is the band index) (see quantum mechanics script as well).

This is exactly what is done when real band diagrams of crystals are shown. Directions are chosen that lead from
the center of the Wigner-Seitz unit cell – or the Brillouin zones in the more generalized picture – to special
symmetry points. These points are labeled according to the following rules:

Points (and lines) inside the Brillouin zone are denoted with Greek letters.
Points on the surface of the Brillouin zone with Roman letters.
The center of the Wigner-Seitz cell is always denoted by a Γ

For cubic reciprocal lattices, the points with a high symmetry on the Wigner-Seitz cell are the intersections of the
Wigner Seitz cell with the low-indexed directions in the cubic elementary cell.
We use the following nomenclature: ( red for fcc, blue for bcc):

The intersection point with the [100] direction is called X (H); the line Γ—X is called ∆.

The intersection point with the [110] direction is called K (N); the line Γ—K is called Σ.

The intersection point with the [111] direction is called L (P); the line Γ—L is called Λ .

The picture above already used this kind of labelling. Since the tracing of the dispersion curve can be done on different
levels – corresponding to the 1st, second, etc. Brillouin zone – the points are often indexed with the number of the
Brillouin zone they use.

This may look like this:
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The top pictures show the elementary cell of the diamond lattice or of the ZnS type lattice; the lower left picture the
Bravais lattice of the fcc type and the primitive (non-cubic) lattice which is an equally valid, if less symmetric,
representation of the fcc lattice..
The lower right picture shows the cubic reciprocal lattice of the cubic fcc lattice (which is a bcc lattice) and the
Wigner-Seitz cells (identical with the first Brillouin zone) which also represent the reciprocal lattice

We now can draw the band diagrams along all kinds of lines – not only from Γ to some point on the Brillouin zone, but
also from point to point, e.g., from L to K or to some other points not yet labeled. An example for the fcc structure and
the free electron gas approximation is shown below.

The first Brillouin zone with the proper indexing of the relevant points and some dispersion parabola along prominent
directions are shown. The picture is taken from Hummel's book.
The indexing of the various branches is a bit more complicated than in the illustration example for reasons explained
below.

Contemplate this picture a bit and then ask yourself:

Do I find this picture alarming ? ("Gee, if even the most simple situation produces such a complicated
structure, I'm never going to understand it)
Do I find this picture exciting? ("Gee, what a wealth of information one can get in a simple diagram if you pick
a smart way of representation").

Yes, it is a bit confusing at first. But do not despair: If you need it, if you work with it, you will quickly catch on!

It is standard praxis to join the single diagram at appropriate points and to draw band diagrams by showing two
branches starting from Γ to major points and to continue from there as already practiced above.

The band diagram of Si, e.g., then assumes its standard form:
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The indexing of the major points in the Brillouin zone is more complex than described so far – it is more than just a
band index. This reflects the fact that there is no unique choice of the Γ point, or that the the band structure allows
certain symmetry operations without changing. The indexing follows rules of group theory displaying the
symmetries, but shall not be described here.

The band structure as shown in this standard diagram contains a tremendous amount of information; at this level it is,
e.g., evident that:

Si has a band gap of about 1 eV.

Si is an indirect semiconductor because the maximum of the valence band (at Γ) does not coincide with the
minimum of the conduction band (to the left of X).

There is, however, a lot more information encoded in this diagram, as we will see later.

Of course, the question remains how the band structures of real-world materials can be obtained. However, concerning
both measurementes and calculations, this is a rather involved subject of its own; we do not treat it here.

To get at least a coarse feeling about how involved such calculations are, you may have a look at some really
advanced module where the theoretical basics and the available software are presented.
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2.2 Basic Semiconductor Physics

2.2.1 Intrinsic Properties in Equilibrium

In this subchapter we deal with basic semiconductor properties and simple devices like p-n junctions on a somewhat
simplified, but easy to understand base. It shall serve to give a good basic understanding, if not "gut feeling" to what
happens in semiconductors, leaving more involved formal theory for later.

However: Intrinsic semiconductors are theoretical concepts, requiring an absolutely perfect infinite crystal. Finite
crystals with some imperfections may have properties that are widely different from their intrinsic properties.
As a general rule of thumb: If you cannot come up with a material that is at least remotely similar to what it should
be in its "intrinsic" state, it is mostly useless because then you cannot manipulate its properties by doping.
That is the major reason, why we utilize so few semiconductors – essentially Si, GaAs, GaP, InP, GaN, SiC and
their relatives – and tend to forget that there is a large number of "intrinsically" semiconducting materials out there.
For a short list activate the (German) link.

Silicon crystals are pretty good and thus are closest to truly intrinsic properties. But even with the best Si, we are not
really close to intrinsic properties, see exercise 3.1-1 for that. Nevertheless: This chapter always refers to silicon, if not
otherwise stated!

A few very basic aspects about semiconductors, including some specific expressions and graphical
representations, will be taken for granted; in case of doubt refer to the link with an alphabetical list of basic
semiconductor terms.

Fermi Energy and Carrier Density

In this first section we review the properties of intrinsic semiconductors . We make two simplifying assumptions at the
beginning (explaining later in more detail what they imply):

The semiconductor is "perfect ", i.e. it contains no crystal defects whatsoever.

The effective density of states in the conduction and valence band, the mass, mobility, lifetime, and so on of
electrons and holes are identical. (See below for any detail about these quantities.)

All we need to know for a start then is the magnitude of the band gap Eg. The Fermi energy then is exactly in the middle
of the forbidden band; we can deduce that as follows:

Namey, by just looking at a drawing schematically showing the density of electrons in the valence and conduction
band where, for ease of drawing, the Fermi distribution is shown with straight lines instead of the actual curved
shape.

Note that in the standard literature (especially in the English language scientific literature), typically one doesn't
sharply distinguish between carrier density and carrier concentration. If in doubt, look for the unit of measurement
relevant in the given equation.

The density of electrons, ne, in the conduction band is given exactly by

ne  = 

E'
⌠
⌡
EC

D(E) · f(E,T) · dE

With E ' = energy of the upper band edge.
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With the usual approximations:

Boltzmann distribution instead of Fermi distribution.
Substitution of an effective density of states, Neff at the band edge instead of the true, energy-dependent
density.
Integration from the lower band edge EC to infinity

we obtain

ne  = Neff e  · exp




– 
EC  –  EF

kT 





The light blue triangle in the picture symbolizes this density!

Neffe  (with the factor two for spin up/spin down included) can be estimated from the free electron gas model in a fair
approximation to

Neffe = 2




2 πmkT

h2





3/2

How this is done and how some numbers can be generated from this formula (look at the dimensions in the formula
above and start wondering) can be found in the link.

In an intrinsic semiconductor in thermal equilibrium, all electrons in the conduction band come from the valence band.
The density of holes in the valence band, nh , thus must be exactly equal to the density of electrons in the conduction
band, or

ne  = nh  = ni  = 
intrinsic
density

The dark blue triangle in the picture then symbolizes the hole density.

Important: This is how holes are defined , and for good reasons; as we will see (rather soon), only the empty
valence band states can reasonably be considered as being occupied by holes (= mobile positive charge carriers).
Given the assumptions made above and the symmetry of the Fermi distribution, the unavoidable conclusion is that
the Fermi energy is exactly in the middle of the band gap.

Carrier Density and Conductivity

The carrier densities are decisive for the conductivity (or resistivity) of the material. If you are not familiar (or forgot) about
conductivity, mobility, resistivity, and so on and how they connect to the average properties of an electron gas in thermal
equilibrium, go through the following basic modules:

Ohm's Law and Materials Properties

Ohm's Law and Classical Physics

We thus have the density of mobile carriers in both bands and from that we can calculate the conductivity σ via the
standard formula

σ  =  e · (µe · ne+ µh · nh)

provided we know the mobilities µ of the electrons and holes, µe and µh, respectively.

Again, simplifying as much as sensibly possible, with µe = µh = µ we obtain

σ = 2eµ · Neff e · exp




– 
EC –  EF

kT 





 = 2eµ · Neffe · exp




– 
Eg

2kT 





because we have EC – EF =  Eg/2 (with the fundamental band gap energy Eg) for the intrinsic case as discussed so
far.
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This gives us already a good idea about the comparable magnitudes and especially the temperature dependences of
semiconductors, because the exponential term overrides the pre-exponential factor which, moreover, we may expect
not to be too different for perfect intrinsic semiconductors of various kinds.
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2.2.2 Doping, Carrier Density, Mobility, and Conductivity

Again, we look at a "perfect" semiconductor, where doping has been achieved by replacing some lattice atoms by
suitable doping atoms without – in the ideal world – changing anything else.

We have now additional allowed energy levels in the band gap, belonging to the doping atoms, i.e. they are localized
states.
These levels may or may not be occupied by electrons; the Fermi distribution will give the probability for occupancy
as before. In analogy to the intrinsic case, we now have the following highly stylized picture:

As in the intrinsic case, in this drawing no distinction was made between carrier density (in cm–3) and carrier
concentration (in ppm, ppb, or the like).

Charge Neutrality Condition

While the picture may look complicated, it is actually just a means to keep track of the number of charges in the
semiconductor. Since there is an over-all charge neutrality, we have

Σ pos. charges = Σ neg.
charges

This equation can be used to calculate the exact position of the Fermi energy (as we will see). Since almost
everything else follows from the Fermi energy, let's look at this in some detail.

But wait – why are there positive charges at all? Aren't we just discussing the occupation of electronic levels/states?
After all, electrons are negatively charged. And by which rule is it that some states in the above figure count the one
way (negative), but some the other way (positive)?

This rule is simple: Everything counts relative to the individual behavior at zero kelvin (*) where the conduction
band is completely empty, the valence band is completely filled, all donor states are occupied, and all acceptor
states are empty.
Of course, if both donor and acceptor states were present together in a material, then at zero kelvin the electrons
would not be distributed like that. And that's why it is emphasized that one has to look at the individual behavior of
these states at zero kelvin, because charge neutrality is defined relative to the latter (for which it obviously holds).
(* Yes: The units of measurement are spelled with small letters – because it's only the natural persons' names that
are spelled with capital letters.)

First, let's count the negative charges which, following the above rule, means to look for those places where at zero
kelvin no electrons are to be found.

There are, first, the electrons in the conduction band. Their density, as spelled out before, was

ne = Neffe  · exp




– 
EC  –  EF

kT 





More generally and more correctly, however, we have

ne  = Neffe · f(EC, EF ,T)
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The Fermi energy EF is now included as a variable in the Fermi function, because the density of electrons depends on
its precise value which we do not yet know. In this formulation the electron density comes out always correct, no matter
where the Fermi energy is positioned in the band gap.

Then there are, second, the negatively charged acceptor atoms . Their density NA– is given by the density of
acceptor states (which is just the doping density N A ) times the probability that the states are occupied, and that is
given by the value of the Fermi distribution at the energy of the acceptor state, f(EA, EF,T). We have accordingly

NA–  =  NA · f(EA, EF,T)

Note: The Fermi distribution in this case should be slightly modified to be totally correct. The difference to the
straight-forward formulation chosen here is slight, however, so we will keep it in this simple way. More about thisin
an advanced module.

Now let's count the positive charges which, following the above rule, means to look for those places that at zero kelvin
are completely filled with electrons.

First , we have the holes in the valence band. Their number is given by the number of electrons that do not occupy
states in the valence band; in other words we have to multiply the effective density of states with the probability that
the state is not occupied.
The probability that a state is not occupied is just 1 minus the probability that it is occupied, or simply 1 – f(E, EF,
T). This gives the density of holes to

nh  =  Neff h · 
1  –  f(EV , EF , T) 



Second , we have the positively charged donors, i.e. the donor atoms that lost an electron. Their density ND+ is
equal to the density of states at the donor level (which is again identical to the density of the donors themselves)
times the probability that the level is not occupied; so, we have

ND+  = ND

1 – f(ED, EF, T) 



Charge neutrality thus demands

Neffe · f(EC , EF, T)  +  NA· f (EA, EF, T)  =  Neff h  · 
1 – f(EV, EF, T) 

  +  ND · 1 – f(ED, EF, T) 


If we insert the expression for the Fermi distribution

f( En, EF, T)  = 

1

exp 


En  –  EF

kT 


 + 1

where En stands for EC,V,D,A , we have, for a given material with a given doping, one equation for the one unknown
quantity EF !

Solving this equation for any given semiconductor and any density of (ideal) donors and acceptors will not only give us
the exact value of the Fermi energy EF for any temperature T, i.e. EF (T), but all the carrier densities as specified above.

Unfortunately, this is a messy transcendental equation – it has no direct solution that we can write down.

Before the advent of cheap computers, this was a problem – you had to do case studies and use approximations:
High or low temperatures, only donors, only acceptors and so on. This is still very useful, because it helps to
understand the essentials.

However, here we could use a program (written by J. Carstensen) that solves the transcendental equation and provides
all functions and numbers required.

Unfortunately, the relevant JAVA applet doesn't work anymore, so the link to this illustration module is deactivated.

Therefore, here we show only a screen shot with the result for the typical case of Si with
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1. An acceptor density of 1015 cm–3 (red line).

2. A donor density of 1017 cm–3 (blue line).

One of many important points to note about carrier densities is the simple, but technologically supremely important fact
that the majority carrier density for many semiconductors in a technically useful temperature interval is practically
identical to the dopant density.

This is then the temperature regime were we can hope to have only a weak
temperature dependence of electronic properties and thus of devices made
from Si.

The equations used for charge neutrality also make possible to deduce an extremely important relation, the mass
action law (for electrons and holes), as follows:

First we consider the product

ne · nh  = N effe · f(EC, EF, T) · Neffh · [1 – f(EV, EF,T)]

Then we insert the formula for the Fermi distribution and note that

1 – f(EV, T)  =  1   –  
 
 

 
1

  =  
 
 

 
1

exp 


EV  –  EF

kT 


   +  1 1  +  exp 


EF  –  EV

kT 




Using the Boltzmann approximation for the Fermi distribution, we get the famous and very important mass action
law (try it yourself!):

ne · nh  =  Neffe · Neffh  ·  exp




–
EC  – E V

kT 





   =   ni 2

We are now in a position to calculate the density of majority and minority carriers with very good precision if we use the
complete formula, and with a sufficient precision for the appropriate temperature range where we can use the following
very simple relations:
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nmaj  = Ndop    
      

n min  = 
n i2

nmaj

 = 
ni2

Ndop

We know that the conductivity σ of the semiconductor is given by

σ =  e · (ne · µe  +  nh· µh)

With µ = mobility of the carriers.

We now have the densities; obviously we now have to consider the mobility of the carriers.

 

Mobility
  

Finding simple relations for the mobility of the carriers is just not possible. Calculating mobilities from basic material
properties is a far-fetched task, much more complicated and involved than the carrier density business.

However, the carrier densities (and their redistribution in contacts and electrical fields) is far more important for a
basic understanding of semiconductors and devices than the carrier mobility.
At this point we will therefore only give a cursory view of the essentials relating to the mobility of carriers.

The mobility µ of a carrier in an operational sense is defined as the proportionality constant between the average drift
velocity vD of an ensemble of carriers in the presence of an electrical field E:

vD  = µ · E

The average (absolute) velocity v of a carrier and its drift velocity vD must not be confused; for a detailed discussion
consult the links to two basic modules:

Ohm's Law and Materials Properties
Ohm's Law and Classical Physics

The simple linear relationship between the drift velocity and the electrical field as a driving force is pretty universal –
it is the requirement for ohmic behavior (look it up in the link) – but not always obeyed. In particular, the drift velocity
may saturate at high field strengths, i.e. increasing the field strength does not increase vD anymore. We come back
to that later.

Here we only want to get a feeling for the order of magnitudes of the mobilities and the major factors determining these
numbers.

As we (should) know, the prime factor influencing mobility is the average time between scattering processes. In fact,
the mobility µ may be written as

µ  = 
e · τ s

m 

With τs = mean scattering time. We thus have to look at the major scattering processes in semiconductors.

There are three important mechanisms:

The first (and least important one) is scattering at crystal defects like dislocations or (unwanted) impurity atoms.

Since we consider only "perfect" semiconductors at this point, and since most economically important
semiconductors are pretty perfect in this respect, we do not have to look into this mechanism here.
However, we have to keep an open mind because semiconductors with a high density of lattice defects are coming
into their own (e.g. GaN or CuInSe2 ) and we should be aware that the mobilities in these semiconductors might be
impaired by these defects.

Second, we have the scattering at wanted impurity atoms, in other word at the (charged) dopant atoms.
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This is a major scattering process which leads to decreasing mobilities with increasing doping density. The relation,
however, is non-linear and the influence is most pronounced for larger doping densities, say beyond 1017 cm–3 for
Si.
Examples for the relation between doping and mobilities can be found in the illustration.

As a rule of thumb for Si, increasing the doping level by 3 orders of magnitude starting at about about 1015 cm–3 will
decrease the mobility by one order of magnitude, so the change in conductivity will be about only two orders of
magnitude instead of three if only the carrier density would change.
The scattering at charged dopant atoms decreases with increasing temperature. (This results mainly from the
scattering being Rutherford scattering via Coulomb interaction, for which the scattering cross section reduces with
increasing temperature.)

Third, we have scattering at phonons – the other important process. Phonons are the (quantum-mechanical) "particles"
corresponding to the thermally stimulated lattice vibrations and thus strongly depend on temperature.

This part scales with the density of phonons, i.e. it increases with increasing temperature (with about T 3/2). It is
thus not surprising that it dominates at high temperatures (while scattering at dopant atoms may dominate at low
temperatures).

Scattering at phonons and dopant atoms together essentially dominate the mobilities.

The different and opposing temperature dependencies almost cancel each other to a certain extent for medium to
high doping levels (see the illustration), again a very beneficial feature for technical applications where one doesn't
want strongly temperature dependent device properties.
 

Conductivity
  

With a relatively simple law for the carrier densities and no direct equations for the mobility, but relatively simple
behavior of the mobility, conductivity data can now be compiled.

Some data giving the relationship between doping and resisitivity (=1/conductivity) or the temperature dependence of
the conductivity are shown in the illustration.

The illustrations show different behavior for n- and p-type Si, which could not be predicted in our present simplified
treatment; it is due to different mobilities of the different carriers.

Our present assumptions of equal parameters (mass, mobility, life time, and so on) for electrons and holes, while
justifiable in a 1st degree approximation, are too simple. Specific differences between holes and electrons exist and
will be dealt with in subsequent chapters. They are responsible for the differences in mobility, conductivity, and so
on between holes and electrons.
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2.2.3 Lifetime and Diffusion Length

So far we looked at (perfect) semiconductors in perfect equilibrium. The density of holes and electrons was given by the
type of the semiconductor (as signified by the band gap), the doping, and the temperature.

The only other property of interest (introduced in passing) was the carrier mobility – a quantity that is determined in
a comparatively complex way by properties of the semiconducting materials in question.
The carrier density so far was constant and did not change in time – we perceived the system statically.

Concept of Life Time

In reality, however, we have a dynamic equilibrium: Electron–hole pairs are generated all the time and they recombine
all the time, too – but their average density in equilibrium stays constant.

The easiest way to include this dynamic equilibrium in the formal representation of semiconductors is to introduce
the concept of the minority carrier life time, or life time in short.
Here we look at it in a extremely simplified way – the idea is to just get the fundamentals right. In the next chapter
we will delve a little deeper into the subject.

Let's consider a p-doped semiconductor. The majority carriers then are holes in the valence band; in the appropriate
temperature range, their density is essentially given by the density of the acceptors put into the material.

The electrons in the conduction band are the minority carriers, their density ne is given via the mass action law (nh ·
ne = ni2) by equating the majority carrier density with the density of the doping atoms:

ne  = nmin  = 
ni2

nh

 = 
ni2

NA

Now consider some light impinging on the material with an energy larger than the band gap, so it will be absorbed by
generating electron–hole pairs. Let's assume that Ghν electron hole pairs will be generated every second (the index
"hν" refers to the photons via their energy to distinguish this generation rate from others yet to come).

The density of both electrons and holes will now increase and no longer reflect the equilibrium values.

The deviation from equilibrium is much more pronounced for the minority carriers (which here are the electrons). If,
for example, the density of the electrons is 0.1 % of the hole density; an increase of the hole density of 0.1 % due to
the light-generated holes would increase the electron population by 100 %.
Consequently, in non-equilibrium conditions, we are mostly interested in what happens to the minority carriers – the
majority carriers then will be automatically taken care of, too, as we will see.

Evidently, the density of minority carriers cannot grow indefinitely while light shines on the semiconductor. Some of the
excess electrons will disappear again due to recombination with holes.

If the recombination rate is proportional to the density of the minorities, an equilibrium will be reached eventually,
where the additional rate of recombination equals the generation rate Ghν, and the density will then be constant
again at some higher level.
If we now were to turn off the light, the minority carrier density will decrease (in the usual exponential fashion) to its
thermal equilibrium value. The average time needed for a decrease of 1/e is the minority carrier life time τ.

This is a simple but nonetheless correct way to think about life times and we are now using this concept to arrive at a
few more major properties and relations.
 

Direct and Indirect Semiconductors
  

First, let's consider the rough magnitude of the life time τ. A recombination process implies that the (quasi) wave vectors
of both, electron and hole, change during this process – simply because the particles annihilate each other, so also the
(quasi) wave vectors get annihilated in the end.

Any change in (quasi) wave vector is always subjected to the requirement of conservation of the (crystal)
momentum. In the simplest case of a band–band transition, this requires a vertical line in the reduced band diagram.
This is only possible if there are occupied electron and hole states directly on top of each other. Let's visualize this
by looking at the electron–hole pair generation process by a photon more closely:
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Shown is the band diagram for an indirect semiconductor, i.e. the minimum of the conduction band is not directly
over the maximum of the valence band.
A photon with the energy hν lifts an electron from somewhere in the valence band to a position directly overhead in
the conduction band, giving all its energy to the electron. That the new state of the electron lies "directly overhead"
is due to the fact that the momentum of the photon is neglibly small.
Instant exercise: Show that this is true by estimating the magnitude of the photon's wavevelength, λ, for a photon
energy of 1 eV. Why is it sufficient to know this value? (Hint: We consider band–band transitions within the first
Brillouin zone.)
A hole and an electron deep in the valence band or conduction band, respectively, are created which immediately
(within picoseconds), by releasing phonons, give up their surplus energy relative to the maximum of the valence
band or minimum of the conduction band, respectively, and thus come to an energetic rest at the extrema of the
bands.
Their wave vectors now are different – direct recombination is not allowed; it would violate Braggs (generalized) law
or the conservation of crystal momentum. Recombination needs a third partner (e.g. lattice defects), and life times
will be large (typically microseconds if not milliseconds) and depends somehow on the density of suitable third
partners.
Did you look closely? Yes? Closely enough to notice that this picture contains a very basic mistake (that doesn't
influence what has been discussed, however)? Good! If you didn't notice, you may want to activate the link.

For direct semiconductors the diagram would be very similar, except that the extrema of the bands are now on top of
each other.

Recombination now is easily possible, the energy liberated will be in the form of a photon – recombination thus
produces light.
Life times in the case of direct semiconductors thus tend to be short – typically nanoseconds – and are dominated
by the properties of the semiconductor itself.

What exactly determines the life time in indirect semiconductors like Si? In our simplified view of "perfect" crystals,
would recombination simply be impossible?

There are several mechanisms that make recombination possible in real crystals. Generally, a third partner is
needed to provide momentum conservation (and is thus also involved in the energy transfer).
Usually, this third partner is a defect of some kind. Most notorious are certain atomic defects, often interstitial
atoms as, e.g., Fe, Ni, Cu, Au, and many others. But the doping atoms and coarser defects like dislocations and
grain boundaries also help recombination along. Last, but also least, it is also possible that phonons get involved.

In summary, the life time of indirect semiconductors is dominated by defects, by impurities, by anything that makes the
crystal imperfect. It is thus a property that can vary over many orders of magnitude – some examples can be found in
the link. In very perfect indirect semiconductors, however, it is a very large time (for electrons), and can easily be found
in the millisecond range.
 

Generalization
  

In an important generalization of what has been said so far, we realize that a minority carrier does not "know" how it was
generated. Generation by a thermal energy fluctuation in thermal equilibrium or generation by a photon in non-equilibrium
– it's all the same!

The minority carrier, once it was generated, will recombine (on average) after the life time τ. This is valid for all
minority carriers (at least as long as their density is not too far off the the equilibrium value).
This implies that the minority carriers will disappear within fractions of a second after they were generated!

However, since we have a constant density of minority carriers in thermal equilibrium, we are forced to introduce a
generation rate G for them that is exactly identical to their recombination rate R in equilibrium.

In other words, the carrier densities in the valence and conduction bands are not in static, but in dynamic
equilibrium (see the thermodynamics script as well).
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Their (average) density stays constant as long as G = R. Think of your bank account. Its average balance will be
constant as long as the withdrawal rate is equal to the deposition rate.

From the values of the densities we can not make any statement as to the recombination and generation rate – your
bank balance stays constant if you withdraw and deposit 1 $ a week or 1 million $!

If we know the life time τ, however, we can immediately write down the recombination rate:

R is the number of recombinations per second (and per cm3), i.e. R = nmin/τ with nmin = density (or number; as
always we use these quantities synonymously even so this is not strictly correct) of minority carriers.
With the relations from above we obtain the following expression:

G  = R  = 
ni2

τ · NDop

With NDop = density of the doping atoms.
This equation is a good approximation for the temperature range where the doping atoms are all ionized but little
band–band transitions take place, i.e., in the temperature range where the semiconductor is usually used. And do not
forget: it is only valid in thermodynamic equilibrium.
 

Diffusion Length
  

Minority (and majority) carriers are not sitting still in the lattice (they are only "sitting still" in k-space!), but move around
with some average velocity.

In the free electron gas model this velocity could be directly calculated from the momentum mv = ·k, so v = k/
m.
But this is the phase velocity and this relation does not apply to the holes and electrons at the edges of the
valence and conduction band, i.e. in the region of the dispersion relation where the differences between the free
electron gas model and the real band structure is most pronounced and the group velocity can be very low if not
zero.
For the purpose of this subchapter let's simply assume that the carriers move randomly through the lattice (being
scattered all the time) and that this movement can just as well be described by a diffusion coefficient D as
always.
We already had a glimpse that there is a connection between the mobility µ and the random movement of the
carriers. Here we will take this for granted (we will come back to this issue later) and take note of this simple, but
far-reaching relation, called Einstein relation. This relation connects the mobility and the diffusion coefficient D
via

D  =  µ ·
kT

e

The diffusion coefficient D, of course, is the proportionality constant that connects the diffusion current j of particles
(not necessarily an electrical current!) to their density gradient ∇ρ(x,y,z) (with ρ = density of the particles) via
Fick's first law:

j(x,y,z)  =  – D · ∇ρ(x,y,z )

Bearing this in mind, we now can relate the average distance (x2 + y2 + z2)1/2 that a particle moved away from its
position (0,0,0) at t = 0 after it diffused around for a time t via another Einstein relation by

<r > = D · t 
1/2

 =  




kT · µ · t

e





1/2

A minority carrier with a specific life time τ thus will be found at an average distance from the point were it was
generated given by
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<r>  = D · τ


1/2  =: L

This specific distance we call the diffusion length L of the minority carriers.

The diffusion length L is just as good a measure of the dynamics of the carrier system as the life time τ; we can always
switch from one to the other via the Einstein relations.

Long life times correspond to long diffusion lengths. In today's Si, diffusion lengths of mm can be achieved – a
tremendous distance in the world of electrons and holes.
 

Real Semiconductors
  

So far we have explicitly or implicitly only considered "perfect" semiconductors – i.e., semiconductors without any
unintentional lattice defects. But now it is easy to consider real semiconductors. Real semiconductors contain
unintentional lattice defects and these defects can have two major detrimental effects if they introduce energy levels in
the band gap.

They may influence or even dominate the carrier density, i.e. they act as unwanted dopants. In many cases of
semiconducting materials without any technical applications so far, the carrier density is pretty much determined
by defects and is practically unalterable (it usually also comes in only one kind of conductivity type).
They influence or dominate the minority carrier life time. This may be a major problem, e.g. for solar cells where
large life times are wanted in rather imperfect materials.
In addition, they will also influence the mobility (usually decreasing it).

Technically, there are several options for dealing with real semiconductors.

Make the material very perfect. This is the recipe for Si microelectronics and most of the III-V compound devices.

Live with the defects and render them impotent as far as possible, e.g. by hydrogen passivation.

Find semiconductors where the defect levels are not in the band gap (after passivation). An example may be
CuInSe2, which is usable for solar cells despite lots of defects, and GaN, which is the standard material for blue
light-emitting diodes.
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2.2.4 Simple Junctions and Devices

In this section we will look at some junctions in a cursory manner with the goal to get a basic understanding for current
flow and the driving forces behind it.

We will see that it is possible (with only a little cutting of corners) to come to a complete quantitative description of the
current–voltage relationship of a p–n junction; even including the (usually omitted) generation current part, without doing
a lot of math.
We will do this in three steps: First we look at a hypothetical junction, then at the classical p–n junction, then at a real
p–n junction with recombination and generation currents in the space charge region.

But don't deceive yourself! These are difficult subjects, even if they are made to look relatively easy here.

We will delve somewhat deeper into these subjects later. However, within the scope of this course, there will not be
enough time to go into junction theory thoroughly and in depth.
Here we only attempt to give enough background knowledge, so you can understand the rigid treatment of device
physics that can be found in many books.
 

Equilibrium Between a Semiconductor and its Surface as a Model

First, we must realize that the surface is a defect – beyond it, there is no periodic lattice anymore; the bonds of the surface
atoms have some other arrangements than the bonds in the bulk.

The dispersion relation of electrons in the two-dimensional surface "crystal" thus must be expected to be different from
that of the bulk.
In the simplest approximation conceivable, we may picture the surface with the same band diagram as the bulk (but in
only two spacial dimensions), but with plenty of additional states in the band gap.

We have then the following representation:

The surface introduces some unspecified states in the band gap of an n-type semiconductor, shown here arbitrarily as
acceptor states. The Fermi energy will adjust itself as shown: Since states in the bandgap are available that are lower
than the donor states (not shown for graphic simplicity), electrons will move down to these states – so the Fermi
energy also comes down.

We will now consider what would be happening if we were to bring the bulk and the surface in close contact. Shown here
are three graphical representations of this (fictitious!) process:

Upon contacting, the electrons from the conduction band of the bulk will flow to the still empty states of the surface.
This will put an additional negative charge at the surface. (Note that before that, the surface was not charged.)

  
In response to the negative surface charge, the electrostatic potential at the surface goes up and extends
(decreasingly) into the bulk – we have an internal potential V(x). The simplest way to visualize the band bending
going with this potential is to remember that the electrons from the bulk are repelled by the negative surface charge.
Since work is needed to move them to the surface, this is an "uphill" process. (Remember that the band diagram gives
the energy of the electrons.)
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As long as the total energy can be reduced by moving electrons from the bulk to the surface, the process will continue.
(Remember that energy minimization is the way towards equilibrium.) Equilibrium is reached as soon as it makes no
difference any more if one more electron is in the bulk or on the surface, i.e., if we change the electron amount by ∆ne.
This means that equilibrium is given by 0 = dG = (∂G/∂ne)bulk · ∆ne(bulk) + (∂G/∂ne)surface · ∆ne(surface).

From the obvious relation ∆ne(bulk) = –∆ne(surface) it follows that in equilibrium, we have (∂G/∂ne)bulk = (∂G/
∂ne)surface. Since (∂G/∂ne) = chemical potential µ = Fermi energy EF, this means that:

EF(bulk)  = EF(surface)

This is a crucial point; let's make it again:

In thermal equilibrium, the Fermi energy EF is the
same everywhere.

If you are not too sure about this, read up about the concept of the chemical potential in the basic
module.

This automatically leads to an imbalance of charge, we now have local violations of charge equilibrium.

The area with the band bending will not contain free electrons, but still the positively charged donor
atoms (= "ionized"), it thus contains charges fixed in space and is called a space charge region
(SCR).
The SCR also contains an electrical field E which is given directly by the derivative of the electrostatic
potential V by E = –∇V (or, for the one-dimensional case, by Ex = –dV/dx), or it can be obtained via
the Poisson equation.
 

The Space Charge Region
  

The easiest way to think about this electrical field is to consider the field lines, which start at a positive charge and end at a
negative charge.

The negative charges are the surplus electrons sitting in the surface states (and thus also in real space at the surface),
the positive charges are the "ionized" donor atoms in the bulk.
This view immediately leads to a "quick and dirty" formula for the width d of the space charge region: We consider the
capacitance CSCR of the SCR.
Since the positive charges are spread homogeneously through the volume of the SCR, we approximate the capacity of
the SCR by a plate capacitor with half the distance d between the plates, i.e., dcap = d/2. In other words, we sort of
put all the positive charge on a fictitious plate at half the width of the SCR.
The capacitance then becomes
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CSCR = 
2 εr · ε0 · A

d
 = 

Q

U

With A = area of the capacitor plates, Q = charge on the plates and U = potential difference between the plates.

The charge on the plates is equal to the number of ionized donors in the volume of the SCR. The volume is d · A and
the number of charges is just the density of donors ND (assuming that all are ionized) times the elementary charge e
times the volume d · A, so we have

Q  = e · ND · d · A

Substituting this in the equation from above, we obtain

2 εr · ε0 · A

d
 = 

e · ND · d · A

U

This gives us one of the more important semiconductor device equations in its simplest form – and this is the correct
equation despite the somewhat questionable assumption of dcap = d/2:

d  = 




2 εr ε0 Ubi

e ND





1/2

The voltage Ubi is the difference of the values of the internal potential between the bulk and the surface; it is called the
built-in potential. Here, of course, it is simply the difference of the Fermi energies expressed as a potential, i.e.

Ubi  = 
∆EF

e

We immediately can generalize: If, in addition to the "built-in" potential ∆EF/e, an additional external potential Uex is
added from the outside by simply connecting the material to a voltage source at Uex, the total voltage becomes U =
∆EF/e + Uex, and the width of the space charge region is

d  = 
1

e
 · 





2 εr · ε0 · (∆EF + e · Uex)

ND





1/2

Note that, since the built-in potential Ubi is taken to be positive, a positive Uex will increase the width of the space
charge region – by increasing the potential difference between bulk and surface.

It is easy to to obtain the same equation by integrating the Poisson equation for this case. This is done in an illustration
module.

This example illustrates nicely the approach we take in this chapter: We start from the most simple consideration of
the case and try to deduce proper relations and formula by analogies – cutting corners a little if necessary (but only as
long the results are still correct).

 

"Ideal" p–n Junction
  

We now construct a p–n junction exactly along the recipe given above:

Draw the band diagrams of both parts.

Join the two parts, move electrons to the materials with the lower Fermi energy, holes opposite.

Build up space charges and shift the potentials accordingly until the Fermi energy is the same everywhere.

These steps are illustrated below:
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As a graphical aid, which will be useful in cases to come, the carriers are schematically indicated as circles (electrons)
and squares (holes). Many such symbols being present is meant as an indication for majority carriers, whereas few
ones being present indicates the minorities.

The only differences to the first situation is that we now have a space charge region on both sides of the junction.

The field lines are now pointing from the positively charged donors on the n-type side to the negatively charged
acceptors on the p-doped side.
The width of the space charge region is now a little more involved to calculate (but there is nothing new); it comes out
to

d = 
 1 

e
·




2 · εr · ε0 ·
1

NA

 + 
1

ND


  · ∆EF + e · Uex







1/2

Now let's look at the various currents flowing in the conduction and valence bands without an external voltage.

We know that the net current is zero – we are in an equilibrium condition as long as we do not apply an external
voltage (or shine some light on it).
We also know that we have a dynamic equilibrium as in the case of the recombination/generation business before. The
net current is zero because the local currents cancel each other. This implies that the electron current flowing uphill
(from left to right) is identical in magnitude and opposite in sign to the one flowing from right to left (downhill).
The same reasoning applies, of course, to the holes in the valence band.

The partial currents discerned above have several specific names. The current component flowing uphill in energy is called .
. .

Diffusion current, because the driving force behind this current is the density gradient in the carrier density. This
always leads to a current component given by Fick's first law to

jDiff = –D e ∇n

With n = density of the carriers in question. (The electric charge e has to be given explicitly in this equation because n
only gives the number of particles present.)
It is also alternatively called recombination current because all the electrons (or holes) flowing to the other side
become excess minority carriers there and must disappear by recombination, which can be depicted as a current
flowing between the bands.
Looking a little ahead, a p–n junction is a diode and currents in diodes are classified as either forward or reverse
current. Well, the current component in question here is responsible for the forward current in the diode and therefore
is also addressed under that name. We will use mostly this name and abbreviate this current component with jF.

The partial current flowing downhill in energy is called . . .

Field current, because it is the current that the electrical field in the junction produces; i.e. the carriers flow in the
general direction of the field lines with the respective proper signs. The diffusion current, in contrast, flows against the
force exerted by the field (which will slow down these carriers!)
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Drift current, because it is the current that results from a drift – caused by the electrical field – superimposed on
random diffusion movements.
Generation current, because the (minority) carriers that were swept down the energy hill (or up in the case of the
holes) get replaced by increased generation, thereby keeping the density constant.
Reverse current in the diode nomenclature explained above. We will use mostly this name and abbreviate this current
component with jR.
 

Simple Current–Voltage Characteristics
  

In equilibrium, without an external voltage Uex and without illumination, we know that the net current is zero, or

jF = –jR, or, to be more precise,

jF(Uex=0)  =  – jR(Uex=0)

To make life a little easier, we now drop some matter-of-course indices, and the signs; i.e. we only look at the magnitudes
of the current components. It is easy enough to sort out the signs in the end again; in case of doubt refer to the link. In this
shorthand notation we have

jF(0)  = jR(0)

If we draw these currents schematically into the band diagram from above, it looks like this:

Of course, the currents do not flow on both sides of the band edge; this is simply a drawing means.

What happens for finite external voltages? First let's look at the band diagrams:

An external potential Uex is added, which will raise or lower the equilibrium potential, depending on its sign; for sake of
simplicity we only move the p-side band diagram. But do we have to move it up or down?
It depends: We have two possibilities for choosing the polarity of the external voltage, either increasing the already
existing electrical field or weakening it. (Remember that the field lines are pointing from the n-side to the p-side; if you
have forgotten why this is so, look again at the explanation given above.)
Thus, the potential on the p-side goes up for the negative pole of the voltage supply on the p-side (always think about if
electrons are repelled or attracted if you are unsure about how a potential moves bands), and down for the positive pole
on the p-side.
We no longer have an equilibrium situation – the Fermi energy is no longer the same everywhere; we must leave it
undefined across the junction. (Later on we will have a look at how the Fermi energy behaves inside the SCR.)
Far away from the junction, however, nothing (or very little) has changed. We still may consider these parts of the
semiconductor to be in equilibrium (or at least very close to it).

The band diagram for the two possible basic cases then look like this:
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The diffusion currents are shown increased (thicker arrow) if the energy barrier was lowered, and decreased if it was
raised. The drift currents are unchanged.

The situation now is rather simple. The potential step is either increased or decreased. Let's first look what happens to the
forward currents jF(Uex).

At zero volts the electron and hole forward currents have a certain value that is certainly determined by the height of the
energy barrier that the carriers have to overcome, following Boltzmann statistics (as an approximation to the Fermi
statistics, of course).
In other words, the equation for this current includes an exp[–E/(kT)] term. Changing the energy barrier E by ∆ E
simply means to multiply the current at zero volts with exp[–∆E/(kT)].
Since the magnitude of jF for zero external voltage is just jR(Uex=0), the forward current current jF(Uex) at any voltage
Uex is (and this is true both for the electron and the hole forward current)

jF(Uex)  = jR(Uex=0) · exp 
–

∆E

kT 


  = jR(Uex=0) · exp 

–
e · Uex

kT 




Note that, due to the minus sign in the exponent (which we inherited from the Boltzmann distribution), increasing the
energy barrier leads to a decrease of the forward current; we will come back to this later.
Imagine this as a lot of (drunken) bicyclists with various random momentums driving around randomly at the foot of a
hill. Some of them on occasion will make it up the hill because their momentum was large enough and they were
heading in the right direction. The fraction of bicyclists making it will simply change exponentially with the Boltzmann
factor relative to their "current" at some reference value if the hill is raised or lowered.

Now to the reverse current jR(Uex).

It corresponds to (drunken = randomly moving) bicyclists that drive around for a certain time (corresponding to the life
time of the minority carriers) on the plateau on top of the hill before falling off their bikes (recombining).
However, everybody who by accident makes it to the edge of the hill will invariably careen down, i.e., produce a reverse
current.
Clearly, it only matters how many carriers happen to make it to the edge of the potential drop, not how deep it is. In
other words: The reverse current does not depend on the external voltage, or

jR(Uex)  =  jR(Uex=0)  =  jR

The total current is simply the difference between forward and reverse current for the electrons and the holes, so we have
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j(Uex)  =  jF(Uex)  –  jR

e  +  jF(Uex)  –  jR


h

           

j(Uex)  =  jRe  +   jRh 
 ·





exp 
– 

e · Uex

kT


  – 1





Note that we did not assume that the forward or reverse current of the holes must be identical to the forward or reverse
current of the electrons, respectively. Of course, if everything were symmetrical, we would have jRe = jRh, but we want
to keep it a as general as possible even at that level since many real devices employ wildly different electron and hole
currents across the junction.

This is the famous diode equation, and this is all there is to it for straight-forward p–n junctions – except that the
technically relevant diode voltage UD, being related to the technical current flow direction, is taken as positive for the current
flowing in forward direction; thus, we have UD = –Uex .

This just means that, in order to make the forward current flowing, the external voltage must be applied such that it
effectively reduces the built-in potential difference.

Combining the reverse currents of electrons and holes in a single constant j0 := jRe + jRh, we arrive at the final form of the
ideal diode equation:

  

j(UD)  = j0 ·




exp 


e · UD

kT


  – 1





All that is left to do is to consider the reverse currents j0 a bit more closely.

Thinking again about drunken bicyclists, but now driving around on the top of the hill (and thus representing electrons),
we might be tempted to assume that jRe should be proportional to their numbers, i.e., to the minority carrier density on
the plateau.

This, however, is wrong.

So let's sober up and think a bit harder: You only can extract the bicyclists once! Yet if you want a constant current
over time, the best you can do is to take all carriers for the current that are (i) generated per time unit and (ii) making it
to the edge.
In other words, you need to refill the ranks of bicyclists and the current will be proportional to the generation rate G (to
what comes out of the bars per time interval), which we know is equal to the recombination rate R in undisturbed
semiconductors and given by

G  =  R = 
nmin

τ
 = 

ni2

τ · NDop

With τ = lifetime.

Thinking a bit harder yet, we realize that minority carriers generated way back from the junctions will not contribute to the
current. They will "fall off their bike" (recombine) long before they have a chance to come close to the drop-off. Obviously we
only must consider carriers within a certain distance of the junction, and this distance is, of course, the diffusion length L.

This gives us

jR  = const. · e · L· G  = 
const. · e · L · nmin

τ
 = 

const. · e · L · ni2

τ · NDop

The elementary charge e is needed to make an electrical current out of a particle current. And as it turns out by more
involved calculations, the proportionality constant is = 1.

This gives us the complete diode equation exclusively in terms of primary material properties:

 

j(UD)  = 




e · L · ni2

τ · NA


exp (

e · UD

kT
)  –  1





electrons

  +  




e · L · ni2

τ · ND


exp (

e · UD

kT
)  –  1





holes
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This is a remarkable achievement – obtained without involved calculations and cutting corners only once (proportionality
const. = 1). But how good is it? Only the experiment can tell.

If we measure the current–voltage characteristic of an "ideal" p–n junction, we will find the following curves:

Generally, for Ge (or other semiconductors with relatively small band gaps) the measured characteristics is remarkably
close to the one predicted by our formula. For Si, however (and other semiconductors with large band gaps), it is not a
good formula, particularly for for the reverse current. We have large deviations from theory, labeled with black lettering.
So, let's see what went wrong (more details in the link) in each case.

First, our theory has the usual (trivial) omissions. We did not include any ohmic resistance which can be easily added by
putting a resistor in series to the junction. The result is the ohmic behavior for larger voltages as seen at larger currents.
Second, everything will break down at high field strength; this is true for a junction, too. So for large reverse voltages (easily
in the range 100 V . . . 1,000 V), the junction will go up in smoke while drawing a large current called "junction breakdown".

While these points would apply to a Ge junction too (they are not shown in the ideal characteristics), the remaining
deviations for Si involve a major oversight in our present theory:

Third: We did not include carrier generation (and recombination) in the space charge region!

In the bicyclist picture, we did not take into account that there are bars along the slope of the hill, too, which will emit
bicyclists with a certain momentum and direction – they may either go up or down the hill and thus add to the current
of particles moving in either direction.
This adds four more current components (forward and reverse for holes and electrons) summarily called generation
currents from the SCR.

How large are these SCR-caused current components?

The answer comes from one of the more involved problems in semiconductor physics, it is not easy to obtain for real
semiconductors (we will do it later). However, there is an easy way of thinking about it that even comes up with the
usually given formula resulting from serious (but still approximate) computing. But we sure will have to cut a few
corners!
Here we go:

 

Current–Voltage Characteristics with Generation Currents from the Space Charge Region
  

We know the maximum current jmax that could emerge from the space charge region: It is the generation rate of carriers
times the width of the SCR in complete analogy to the discussion above. More than that cannot flow out (in one direction for
the maximum) per unit time.

Every generation event produces a hole and an electron, so we have

jmax  = 2e · GSCR · d

With d = width of the SCR, and GSCR = generation rate inside the space charge region.

How large is GSCR? This needs to be considered in detail since it wouldn't help to simply use the known equation
G = nmin/τ, because nmin is not constant across the SCR; very schematically, it rather looks like this:
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Inside the SCR, this makes G a strong function of x – how are we going to handle this?

Well, let's take a kind of average value for the carrier density, and what suggests itself is the intrinsic carrier density ni,
which is the value at the point where the two curves cross each other because of the mass action law stating ne ·
nh = ni2.
Within this (questionable!) approximation the maximum current generated in the SCR then becomes

jmax  = 
2e · ni · d

τ

And we know more: If the external voltage is zero, the total current is zero and this means that half of the SCR current must
be forward and the other half reverse. We have

jF(0)  = jR(0)  = 
e · ni · d

τ

If we now change the barrier height by eUex, the forward current will change as before. However, we cannot simply multiply
by exp[–eUex/(kT)] as before!

While a carrier generated at the bottom of the hill experiences the full added potential, a carrier generated further up
sees less or even no potential if it originates all the way uphill.
So again, let's be sloppy and assume an average additional energy barrier, average between everything and nothing –
and this will be eUex/2.
Again assuming that jR does not depend on the barrier height (but slightly on U since the width d of the SCR is voltage
dependent), this gives us:

jF(Uex) = 
e · ni · d

τ
· exp 

– 
eUex

2kT




jR = 
e · ni · d

τ

The two components no longer add up to jmax, but we don't have to worry about this. We only would be very wrong for
large forward currents, but in this case the bulk forward current is always much larger anyway – so it does not really
matter much for the diode behavior.

The total current from the space charge region then becomes jSCR = jF – jR. Written out and, as above, using UD = –Uex,
we have

jSCR(UD)  = 
e · ni · d

τ
 · 





exp 


eUD

2kT


   –  1





This happens to be exactly the same formula (give or take a factor of 2) that we would obtain with the "proper" theory.
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We now can write down the diode equation in all its splendor:

  jtotal(UD) = 
e · L · ni2

τ · NA





exp 


eUD

kT


   –  1





  +   
e · L · ni2

τ · ND





exp 


eUD

kT


   –  1





   +   
e · ni · d

τ





exp 


eUD

2kT


   –  1





               
   e– bulk     h+ bulk     h+, e– SCR    

We may use the same abbreviation for the bulk reverse current as above and additionally abbreviate the SCR one in a
similar manner, then we see more clearly that we effectively have two diodes parallel, the first (prefactor j01)
representing the bulk currents and the second (prefactor j02) representing the SCR currents:

  

j(UD)  = j01 ·




exp 


e · UD

kT


  – 1





  +  j02 ·




exp 


e · UD

2kT


  – 1





Let's see what it means in forward direction:

We may neglect the –1 in the SCR part of the forward current; it then adds a component that increases with exp[eUD /
(2kT)], i.e., with half the slope of the bulk current (in an Arrhenius diagram). The half-slope component will always "win"
at small voltages but pale to insignificance at higher voltages as shown in the illustration:

The combined characteristic looks very much like the measured behavior shown above; the sharp drop of the current
close to U = 0 V is due to the –1 in the diode equation (i.e., the reverse current jR) which we neglected for larger
voltages.
We also see that the exact value of the SCR forward current indeed only matters for small voltages, as claimed above.

What do we get in reverse direction?

First, the reverse current now is voltage dependent because the width of the space charge region and thus jR increases
with a U1/2 law.
Second, the total reverse current now is larger. Assuming a symmetric junction (ND = NA = NDop) and identical life
times (and so on) for electrons and holes, it is easy to calculate the relation jR(bulk) / jR(SCR); we have

jR(bulk)

jR(SCR)
 = 

e · L · ni 2

τ · NDop

 = 
L · ni

NDop · de · d · ni

τ

The decisive factor is ni. It decreases exponentially with increasing band gap Eg.

This answers the question why Ge junctions follow the simple theory, while Si junctions are far off: If ni >> NDop, then
jR(bulk) >> jR(SCR) and the SCR contribution will not be felt.
The generation current from the SCR thus is much more important in semiconductors with larger band gaps. The
characteristics from above show this rather clearly.
Whereas the SCR part may be safely neglected for Ge (Eg = 0.6 eV), it is about (102 . . . 103) times larger than the
bulk diffusion current in Si.
The SCR currents should be absolutely dominating in large band-gap semiconductors. Not only is ni rather small, but
L = (Dτ)1/2 is very small, too, since these materials are often direct semiconductors.
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2.3 Elements of Advanced Theory

2.3.1 Effective Masses

So far we have treated electrons and holes as identical (except for their charge and concentration) and we also always
assumed thermal equilibrium.

On occasion, we were somewhat inconsistent about the issues. We stated that p–n junctions with external voltages
are actually not in equilibrium, or we kept the electron and hole parts of the currents separate, but we did not really
make much of this – for such situations, we used equilibrium formulas, or did not justify why we do not mix electron and
hole currents in the junction.
In this subchapter we delve deeper into some "advanced" subjects (they are still pretty elementary) to get at least these
aspects straight.
First, we will see how we can save large parts of the simplicity of the free electron gas model by assigning effective
masses to the carriers.

In the free electron gas model an electron had the mass me [always written straight and not in italics because it is not a
variable but a constant of nature (disregarding relativistic effects for the moment), and from now on without the subscript e] –
and that was all to it.

If a force F acts on it, e.g. via an electrical field E, in classical mechanics Newtons laws applies and we can write

F  = – e · E  =  m ·
d2r

dt2

With r = position vector of the electron.

An equally valid description is possible using the momentum p which gives us

p  =  m ·
dr

dt

F  = –e · E  =  
dp

dt

Quantum mechanics might be different from classical mechanics, so let's see what we get in this case.

The essential relation to use is the identity of the particle velocity with the the group velocity vgroup of the wave
package that describes the particle in quantum mechanics. The equation that goes with it is

vgroup  = 
1

·  ∇ k E(k)

Let's see what we get for the free electron gas model. We had the following expression for the energy of a quasi-free
particle:

E(k)  =  Ekin   = 

2 · k2

2m

For vgroup we then obtain

vgroup  = 
1

 

· k

2 · k2

2m 
 =  

 · k

m
 = 

p

m
 = vclassic

Since k was equal to the momentum p = mvclassic of the particle, we have indeed vgroup = vclassic = vphase as it
should be.
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In other words: As long as the E( k) curve is a parabola, all the energy may be interpreted as kinetic energy for a
particle with a (constant) mass m.
Contrariwise, if the dispersion curve is not a parabola, not all the energy is kinetic energy (or the mass is not constant?
??).

How does this apply to an electron in a periodic potential? .

We still have the wave vector k, but k is no longer identical to the momentum of an electron (or hole), but is
considered to be a crystal momentum.
E(k ) is no longer a parabola, but a more complicated function.

Since we usually do not know the exact E(k) relation, we seem to be stuck. However, there are some points that we still
can make:

Electrons at (or close to) the Brillouin zone in each band are diffracted and form standing waves, i.e. they are described
by superpositions of waves with wave vector k and – k. Their group velocity is necessarily close to zero!
This implies that ∇kE(k) at the BZ is close to zero too, which demands that the dispersion curve is almost horizontal at
this point.
The most important point is: We are not interested in electrons (or holes) far away from the band edges. Those
electrons are just "sitting there" (in k-space) and not doing much of interest; only electrons and holes at the band edges
(characterized by a wave vector kex) participate in the generation and recombination processes that are the hallmark of
semiconductors.

We are therefore only interested in the properties of these electrons and holes – and consequently only that part of the
dispersion curve that defines the maxima or minima of the valence band or conductance band, respectively, is important.

The thing to do then is to expand the E(k) curve around the points kex of the extrema into a Taylor series, written, for
simplicity's sake, as a scalar equation and with the terms after k2 neglected.

En(k)  =  EV,C  + k  ·  
∂En

∂k 




kex

  + 
k2

2
 ·  

∂2En

∂k2  




kex

+  .... 

Since we chose the extrema of the dispersion curve, we necessarily have

∂En

∂k 




kex

 = 0      E n(kex)  =  EV   or    EC 

i.e. we are looking at the top of the valence and the bottom of the conductance band.

This leaves us with

En(k)  =   EV,C  +   
k2

2
  · 

∂2En

∂k2 




kex

If we now look at the conduction band and consider only the deviation from its bottom (the zero point of the energy scale
usually is at the top of the valence band), we have the same quadratic relation in k as for the free electron gas, provided we
change the definition of the mass as follows:

∂2EC

∂k2 




kex

 =:  

2

m*

which permits to rewrite the Taylor expansion for the conduction band as follows

EC(k)  –  Eg = 

2

2m*
· k2

And this is the same form as the dispersion relation for the free electron gas!

However, since ∂2 EV,C/∂ k2 may have arbitrary values, the effective mass m* of the quasi-free particles will, in general, be
different from the regular electron rest mass m.
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We therefore used the symbol m* which we call the effective mass of the carrier and write it in italics, because it is no
longer a constant but a variable. It is defined by

m*  =  2 ·  
1 

∂2En / ∂k2 |kex

The decisive factor for the effective mass is thus the curvature of the dispersion curve at the extrema, as expressed in
the second derivative. Large curvatures (= large second derivative = small radius of curvature) give small effective
masses, small curvatures (= small second derivative = large radius of curvature) give large ones.

Let's look at what we did in a simple illustration and then discuss what it all means.

Shown is a band diagram not unlike Si. The true dispersion curve has been approximated in the extrema by the
parabola resulting from the Taylor expansion (dotted lines). The red ones have a larger curvature (i.e. the radius of an
inscribed circle is small); we thus expect the effective mass of the electrons to be smaller than the effective mass of the
holes.

The effective mass has nothing to do with a real mass; it is a mathematical contraption. However, if we know the dispersion
curves (either from involved calculations or from measurements), we can put a number to the effective masses and find that
they are not too different from the real masses.

This gives a bit of confidence to the following interpretation (which can be fully justified theoretically):

If we use the effective mass m* of electrons and holes instead of their real mass m, we may consider their behavior to
be identical to that of electrons (or holes) in the free electron gas model.

This applies in particular to their response to forces. In this case, the deviation from the real mass takes care of the
influence of the lattice on the movement of the particle.
Taken to the extremes, this may even imply zero or negative effective masses. (Yes, even zero effective mass is possible,
but this is a special case of its own and will not be discussed here; for example, graphene has some k-points where m* =
0.)

As one can see from the dispersion curves, the effective mass of the electrons in the valence band, m*V, is always
negative. (This means that a force in +x direction will cause such an electron to move in –x direction.)
Since this is counter-intuitive, usually one doesn't consider the electrons in the valence band, but just the unoccupied
places – i.e., the holes; however, in their proper definition (which we have disregarded so far), holes have a positive
mass by setting

m*h := –m*V

Note (again) that "holes" only exist in the valence band; this is due to their proper definition as quasi-particles
contributing to the electrical conductivity. Thus, all other empty states – in the conduction band, or on additional levels
(e.g. of dopant atoms) – are not holes; this is clear since they do not contribute to the electrical conductivity.

We will not go into more detail but give some (experimental) values for effective masses:
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Holes: m*/m

IV; IV-IV III-V II-VI IV-VI

C 0.25 AlSb 0.98 CdS 0.80 PbS 0.25

Si 0.16
(0.49) GaN 0.60 CdSe 0.45 PbTe 0.20

Ge 0.04
(0.28) GaSb 0.40 ZnO ?   

SiC
(α) 1.00 GaAs 0.082 ZnS ?   

  GaP 0.60     

  InSb 0.40     

  InAs 0.40     

  InP 0.64     

Electrons : m*/m

IV; IV-IV III-V II-VI IV-VI

C 0.2 AlSb 0.12 CdS 0.21 PbS 0.25

Si 0.98
(0.19) GaN 0.19 CdSe 0.13 PbTe 0.17

Ge 1.64
(0.082) GaSb 0.042 ZnO 0.27   

SiC
(α) 0.6 GaAs 0.067 ZnS 0.40   

  GaP 0.82     

  InSb 0.014     

  InAs 0.023     

  InP 0.077     

If there are two values it simply means that two dispersion curves (from different branches in k-space) have an extremum at
the same point.

We already get a feeling that it may make a difference if you work with electrons or holes in a certain device whenever
you consider its frequency limit: As soon as the carriers can no longer follow rapidly changing forces (alternating
electrical fields at high frequencies), the device will not work anymore.
Small effective masses mean small (apparent) inertia or high mobilities µ. Looking at one of the many formulas for
mobility, µ = e · τs/ m, the mobility goes up if we insert the (smaller) effective mass. It may thus be wise to use p-
doped Si if high frequencies matter (and everything else does not matter).

We also notice that Ge has the smallest effective mass for holes!

This means that its holes respond more quickly to the accelarating force of an electrical field and that means that they
also can change direction more quickly than holes in other semiconductors if the electrical field changes its direction.
In other words: If speed only depends on the effective mass of the carriers, Ge still "works" at high frequencies when the
other semiconductors have given up!
And that is why we now (2004) see a sudden revival of Ge, which after its brief period of glory in the end of the fifties /
beginning of the sixties of the 20th century, when it was the one and only semiconductor used for single transistors,
was all but extinct.
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2.3.2 Quasi Fermi Energies

So far we implicitly defined (thermal) equilibrium as a total equilibrium involving three components if you think about it:

1. Equilibrium of the electrons in the conduction band. This means their density was given (within the usual
approximations) by

ne  = Neffe  ·  exp –
EC – EF

kT 

2. Equilibrium of the holes in the valence band. This means their density was given (within the usual
approximations) by

nh   = Neffh  ·  exp –
EF – EV

kT 

3. Equilibrium between the electrons and holes, i.e. between the bands. This means that the Fermi energy is the
same for both bands (and positioned somewhere in the band gap).

Definition of the Quasi Fermi Energy

If an equilibrium is disturbed, it takes a certain time before it is restored again; this is described by the kinetics of the
processes taking place. In a strict sense of speaking, the Fermi energy is not defined without equilibrium, but only after
it has been restored. This restoring process occurs in the bands and between the bands:

In the bands, local equilibrium (in k-space) between the carriers will be obtained after there was time for some
collisions, i.e. after some multiples of the scattering time. This process is known as thermalization and occurs
typically in picoseconds.
Between the bands, equilibrium will be restored by generation and recombination events and this takes a few
multiples of the carrier life time, i.e. at least nanoseconds if not milliseconds.

This means that we can have a partial (or local) equilibrium in the bands long before we have equilibrium between the
bands. This local equilibrium implies that:

Non-equilibrium means something changes in time. Changes in the properties of the particle ensemble considered
(i.e. electrons and holes) in local equilibrium are only due to "traffic" between the bands while the properties of the
particles in the band do not change anymore. The term "local" of course, does not refer to a coordinate, but to a
band.
The carrier densities therefore do not have their total or global equilibrium value as given, e.g., by the mass action
law, but their local equilibrium density can still be given in terms of the equilibrium distribution by

ne  =  Neffe  · exp –
EC – EF e

kT 

nh  =  Neffh  · exp –
EFh – EV

kT 

with the only difference that the Fermi energy now is different for the electrons and holes. Instead of one Fermi
energy EF for the whole system, we now have two Quasi Fermi energies, EFe and EFh.

For the product of the carrier densities we now obtain a somewhat modified mass-action law

ne · nh   =  Neffe  · Neffh  · exp –
(EC – EV) + (EFh – EFe)

kT 

  =  ni2 · exp –
EFh – EF e

kT 

For this we used the by now basic relation
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Neffe  · Neffh  · exp –
EC – EV

kT 

 =  ni2

The name "Quasi Fermi energy" is maybe not so good, there is nothing "quasi " about it. Still, that's the name we and
everybody else will use. Sometimes it is also called "Imref" (Fermi backwards), but that doesn't help much either.

Rewriting the equations from above gives a kind of definition for the Quasi Fermi energies:

EF e   =  EC  –  kT · ln
Neffe

ne

EFh  =  EV  +  kT · ln
N effh

nh

Quasi Fermi energies are extremely helpful for the common situation where we do have non-equilibrium, but only
between the bands – and that covers most of semiconductor devices under conditions of current flow (due to an applied
voltage) or under illumination. We will make frequent use of Quasi Fermi energies!
 

Carrier Densities and Quasi Fermi Energies
  

If we calculate carrier densities in non-equilibrium with the Quasi Fermi energies, we have to be careful to use the right
Quasi Fermi energy in the Fermi-Dirac formula or in the Boltzmann approximation.

After all, we now have two (Quasi) Fermi energies, one "regulating" the density of electrons in the conduction band,
and the other one doing the same for the holes in the valence band. That was already implied above, here we want
to make this topic a bit clearer; we also introduce a new distribution function as a kind of short-hand.
You really must now write f(E, EFe , T) or f(E, EFh, T) instead of simply f(E, EF, T) or f(E) because, due the different
arguments, the meaning of these two expressions is now different. This is illustrated below with the two curves on
the left and should be obvious.
In the pictures we even have some redundancy by writing fe in C(E, EFe, T) and so on. This is not necessary, but
helps in the beginning to avoid mix-up.

The density of electrons or holes in the conduction or valence band, respectively, would now be

ne  =  Neffe · [fe in C(E, EF e, T)]   ≈  Neffe  · exp –
EC – EF e

kT 
    

nh  =  Neffh · [1 – fe in V(E, EFh, T)]   ≈  Neffh  · exp –
EFh – EV

kT 
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The red or blue triangles above symbolize the density of electrons in the conduction band or holes in the valence
band, respectively, as before.

The right-hand side is identical (of course) to what we had above and shows a kind of symmetry not contained in the
formulation with the Fermi distribution, where we have f(E, EF h, T) and 1 – f(E, EFh, T).

This can be remedied easily by simply setting 1 – f(E, E Fh, T) =: fh in V(E, EFh, T) with f h in V being the probability
of finding holes on the available states in the valence band.
This is the curve shown on the right-hand side in the picture above.

If we use that definition, we obtain more symmetry at the cost of more heavily indexed functions. It's a matter of taste.

However, later we will encounter situations where proper bookkeeping of electrons and holes is complicated and
essential. Then it might be easier to keep the situation symmetric, to use fh in V for the holes in the valence band,
and to express all carrier densities in the valence band with fh in V, while in the conduction band we use fe in C.
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2.3.3 Shockley-Read-Hall Recombination

In this chapter we take a closer look at the generation and recombination of carriers. Even the simple treatments given
so far – cf. the formulas for the p-n junction – made it clear that generation and recombination are the major parameters
that govern device characteristics and performance.

First, we will treat in more detail the band-to-band recombination in direct semiconductors, next the recombination
via defects in indirect semiconductors, and for this we introduce and use the "Shockley -Read- Hall
Recombination" or SRH model.
However, we will just sort of scratch the subject. In an advanced module some finer points to recombination are
treated; here we will stick to fundamentals.

First a few basic remarks. Generally, we do not only have to maintain energy and momentum conservation for any
generation/recombination process, we also have to assure that we keep the minimum of the free enthalpy, or in other
words, we have also to consider the entropy of these processes. These requirements transform into the conditions
1. k – k' = g as an expression of the (crystal) momentum conservation.

2. E e – E h = ∆ E something else for energy conservation.

We have EC – EV = ∆E something else because the electrons and holes recombining are always close to the band
edges for energy conservation.
∆E something else refers to the unavoidable condition that "something else" has to provide the energy needed for
generation, or must take away the energy released during recombination.

3. Now we look at the entropy. Recombination reduces the entropy of the system (empty bands are more orderly than
bands with a few wildly moving holes and electrons). The "something else" that takes energy out of the system may in
addition take some entropy out of it, too. However, no easy law can be formulated.
The first two points determine if a recombination/generation event – which we from now on are going to call an R/G-event
– can take place at all, i.e. if it is allowed; the third point comes in – in principle – when we discuss the probability of an
allowed R/G-event to take place. This insight, however, will only be used in an indirect way in what follows.
The major quantities are the recombination rate R and the generation rate G.

The recombination rate R is the more important one of the two. It is related to the carrier density ne,h by

dne,h

dt
 = –R

It is always directly given by the rate at which the carrier density decreases (the minus sign thus makes R a positive
quantity) and it does not matter which carrier type we are looking at because dn e /dt = dnh/dt as long as the
carriers disappear in pairs by recombination.
Note that the equilibrium condition of constant carrier density does not mean that there is no dynamics anymore in
the charge carrier population (i.e. that the carriers remain where they are): When n remains constant, this just
means that as many carriers recombine as are generated, since n is an average quantity. (That this is not unlike
the drift velocity of electrons which can be zero despite large thermal velocities of the individual electrons.)
 

Recombination and Generation in Direct Semiconductors

If we first look at recombination in direct semiconductors, we need holes and electrons at the same position in the band
diagram; i.e. in k-space. However, that does not imply that they are at the same position in real space. For a
recombination event they have to find each other; i.e., we also need them to be at about the same position in real
space.

The recombination rate R thus must be proportional to the two densities, ne and nh, because the probability of
finding a partner scales with the carrier density. We thus can write down the recombination rate R as

R  =  r · ne · nh  =  r · Neff h  · Neffe  · exp – 
EC – EFe

kT 
· exp – 

EF h – EV

kT 

With r = proportionality constant, having the dimensions of volume/time; we will come back to this later. We also
only assume only local equilibrium as evidenced by the use of quasi Fermi energies.

We can rewrite this equation as follows
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R  =  r · Neffh  · Neff e  · exp
– EC + EFe – EFh + EV

kT 
  = r · Neff h · Neffe · exp –

EC – EV

kT 
· exp – 

EFh – EFe

kT 

Using our old relation for the intrinsic carrier density ni

ni 2  =  Neffh  · Neffe  · exp – 
EC – EV

kT 

we finally obtain

R  =  r · ni2 ·  exp 
EFe – EFh

kT   

Note again that we have not invoked total equilibrium, but only local equilibrium in the bands – we use the quasi
Fermi energies EFe,h. That is essential; after all it is recombination and generation that restore equilibrium between
the bands and the SRH theory only makes sense for non-equilibrium.

If we were to consider total thermal equilibrium, we know that the generation rate G must be identical to the
recombination rate R; both quasi Fermi energies are identical (= EF) and R = r · ni2 applies.

Note that we did not assume intrinsic conditions; the Fermi energy can have any value, i.e. the semiconductor may
be doped.
In essence, we see the following:

The recombination rate in non-equilibrium depends
very much on the actual carrier density!

So far it was easy and straigth-forward. Now comes an important point.

In contrast to the recombination rate R, the generation rate G does not depend (very much) on the carrier density;
it is just a reflection on the thermal energy contained in the system and therefore pretty much constant. In other
words, under most conditions we have

G = Gtherm   ≈  constant ≠ R(n) 

We may, from the above consideration, equate G under all conditions with the recombination rate for equilibrium, i.e.

G = Gtherm =  r · ni2  

In non-equilibrium, which will be the normal case for devices under operation, the difference (R – G) is no longer zero,
but has some value

U  = R  –  G

Since R is mostly (but not always) larger than G under non-equilibrium conditions, U is the net rate of recombination
(or, on special occasions, the net generation rate).
Using the expressions derived so far, we obtain

U  =  R  –  Gtherm   =  r · (ne · nh –  n i2)  =  r · ni2 ·




exp 
EF e – EFh

kT 
  –   1





This equation tells us, for example, how fast a non-equilibrium carrier density will decay, i.e. how fast full equilibrium
will be reached, or, if we keep the non-equilibrium density fixed for some reason, what kind of recombination
current we must expect.
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This is so because U, the difference between recombination and generation, times the charge is nothing but a net
current flowing from the conduction band to the valence band (for positive U).
 

Determining the Proportionality Constant r
  

We still need to determine the proportionality constant r.

This is not so easy, but we can make a few steps in the right direction. We assume in a purely classical way that
an electron (or hole) moves with some average velocity v through the lattice, and whenever it encounters a hole (or
electron), it recombines.
The problem is the word "encounters ". If the particles were to be small spheres with a diameter dp, "encountering"
would mean that parts of such a sphere would be found in the cylinder with diameter dp formed by another moving
sphere because that would cause a physical contact.
Our particles are not spheres, but for the purpose of scattering theory we treat them as such, except that the
diameter of the cylinder that characterizes its "scattering size" is called scattering cross section σ and has a
numerical value that need not be identical to the particle size.

One electron now covers a volume v · σ per second and all Ne electrons of the whole sample (a number, not a density)
probe per second the volume

Vprobed  = N e · v · σ

Any time an electron encounters a hole in the volume it probes, it recombines. The absolute recombination rate Rabs
then is simply the number of encounters per second, occurring in the whole sample.

How many holes are "hit" per second? In other words, how many are to be found in the volume probed? That is
easy: The number Nh of holes encountered in the volume probed by electrons, and thus the recombination rate is

Nh =  nh ·  Vprobed  =  nh · Ne · v · σ  =  Rabs

Here, nh is simply the density of holes in the sample. You many wonder if this is correct, considering that the holes
move around, too, but simply realize that the density of holes is nevertheless constant.

The formula is a bit unsatisfying, because it contains the volume density of holes, but the absolute number of electrons.

That is easily remedied, however, if we express N e, the number of electrons, by their density ne via Ne = ne · V
with V = sample volume. Using the latter for normalizing the absolute recombination rate to the sample volume, this
gives us

R = 
Rabs

V
 =   Recombinations per

s and cm 3    =  ne · nh · v · σ

In other words, if we use the density of the electron and holes, we obtain a recombination rate density , i.e.
recombination events per s and per cm3 – as it should be. As always, we are going to be a bit sloppy about keeping
densities and numbers apart. But there is no real problem: Just look at the dimensions you get, and you know what
it is.

A comparison with the formula from above yields

r  =  v · σ

This leaves us with finding the proper value for σ. Whereas this is difficult (in fact, the equation above is more useful for
determining σ from measurements of R than to calculate r), we are still much better off than with r alone:

Whereas we had no idea about a rough value for r, we do know something about v (it is the group velocity of the
carriers considered), and we know at least the rough order of magnitude for σ: We would expect it to be in the
general range of atomic dimensions (give or take an order of magnitude).

You might wonder now why we assume that any "meeting" of the elctrons and holes leads to recombination, given that
we have to preserve momentum, too. You are right, but remember:

We are treating direct semiconductors here! Since we only consider the mobile electrons and holes, we only
consider the ones at the band edges – and those have the same k-vector in the reduced band diagram!
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Useful Approximations and the Lifetime τ
  

We now consider non-equilibrium, but describe it in terms of deviations from equilibrium. Then it is sensible to rewrite
the carrier densities (or numbers, take whatever you like) in terms of the equilibrium density ne,h(equ) plus/minus some
delta:

ne,h  = ne,h(equ)  +  ∆ne,h

This is one of the decisive "tricks" to get on with the basic equations, because it permits to specify particular cases
(e.g. ∆ne,h << ne,h(equ) or whatever), and then resort to approximations. We will encounter this "trick" fairly often.

We obtain after some shuffling of the terms form the equation for the net recombination rate U

U  =  v · σ ·  {n e(equ) + ∆ne} · {nh(equ) + ∆nh} – ne(equ) · nh(equ) 


So far everything is still correct. But now we consider a first special, but still rather general case:

We assume that ∆ne = ∆nh = ∆n, i.e. that only additional electron–hole pairs were created in non-equilibrium. We
then may simplify the equation to

U  =  r · ∆n · {ne (equ) + nh(equ)} + ∆n2 


We can simplify even more. For the extrinsic case where one carrier density – let's say for example nh – is far
larger than ne or ∆n (i.e. we have a p-doped semiconductor), we may neglect the terms ∆n · ne(equ) and ∆n2 and
obtain

U  ≈  r · nh · ∆ n

U was the difference between the recombination and the generation rate. We are now looking at an approximation where
only some ∆n in the density of the minority carriers is noticeably different from equilibrium conditions (where we always
have U = 0).

We thus may write

U  = R(equ) + R(∆) – G(equ) = R(∆)

Here, R(∆) denotes the additional recombination due to the excess minorities. Remembering the basic definition of
R we see that now we have

d(∆ne )

dt
 = – U  = – r · nh · ∆ne  = – v · σ · nh · ∆ne

This is a differential equation for ∆ne(t), it has the simple solution

∆ne(t)  = ∆ne(t = 0) · exp – 
  t   

τ

The quantity demanded by the general solution is, of course, the life time of the minority carriers. We now have a
formula for this prime parameter, it comes out to be

τ = 
1 

v · σ · nh

  =  
1 

v · σ · nmaj
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The last equality generalizes for both types of carriers – it is always the density of the majority carriers that
determine the lifetime of the minority carriers. This is clear enough considering the "hit and recombine" scenario that
we postulated at the beginning

Substituting r · n h with 1/τ in the equation for U yields

U  = 
∆ n

τ

In other words: The recombination rate in excess of the recombination rate in equilibrium is simply given by the
excess density of minority carriers divided by their life time.

In yet other words:

The net current flowing from the band containing the minority carriers to the other band is given by U (times the
elementary charge, of course, and times the total sample volume), because U gives the net amount of carriers
"flowing" from here to there! And that is the definition of a current!

This result not only justifies our earlier approach, it gives us the minority carrier life time in more basic quantities
including (at least parts) of its temperature dependence via the thermal velocity v and the majority carrier density nh –
the T-dependence of which we already know.

Since 1/nh is more or less proportional to the resistivity, we expect τ to increase linearly with the resistivity which it
does as illustrated before, at least for resistivities that are not too low.
A rough order of magnitude estimate gives indeed a good value for many direct semiconductors:

σ  ≈ 10–15 cm2  

      ⇒         τ  ≈  10–9 s  =  1 ns
 

v  = 107 cm/s
   

nh  = 1017 cm–3

  

Recombination and Generation in Indirect Semiconductors
  

In indirect semiconductors, direct recombination is theoretically impossible or, being more realistic, very improbable.

In general, a recombination event needs a third partner to provide conservation of energy and crystal momentum.

Under most (but not all) circumstances, this third partner is a lattice defect, most commonly an impurity atom, with
an energy state "deep" in the band gap, i.e. not close to the band edges.
Recombination then is determined by these "deep states" or deep levels, and is no longer an intrinsic or just
doping dependent property.

How the recombination and generation depends on the properties of deep levels is the subject of the proper
Shockley–Read–Hall theory (what we did so far was just a warming-up exercise). It is a lengthy theory with long
formulas; here we will just give an outline of the important results. More topics will be covered in an even more advanced
module.

First we look at the situation in a band diagram that shows the relevant energy levels plus the mid-band energy level
EMB, which will come in handy later on.
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Besides the energy level of the "deep level" defect, we now need four transition rates instead of just one
recombination rate:

Red, the rate with which electrons from the conductance band transit from the conduction band to the deep
level, or more simply put, occupy the deep level with the energy EDL – in short: the rate with which they are
going down to the deep level.
Reu , the rate with which electrons occupying the deep level state go up to the conduction band.
Rhu, the rate with which holes from the valence band go up to the deep level – or better: the electrons in the
deep level go down to the valence band, and finally
Rhd, the rate with which holes from the deep level go down to the valence band – or better: electrons up to
the deep level.

The equilibrium density of electrons (and holes) on the deep level is, as always, given by the Fermi distribution. We have

n–DL = NDL · f(EDL, T) = density of negatively charged deep levels with one electron sitting on it, and

n0DL = NDL · [1 – f(EDL, T)] = density of deep levels with no electron sitting on it. NDL , of course, is the density of
deep level states, e.g. the density of impurity atoms. It's written with capital N (otherwise used for absolute
numbers) to avoid confusion with the carrier densities.
To make life easier, we assumed that the deep level is normally neutral, i.e. does not contain an unalterable fixed
charge, and it can only accommodate one additional electron.

We may now write down formulas for the transition rates in direct analogy to the consideration of the recombination rate
in direct semiconductors as given above. For Red we have

Re d  = r · ne · n0DL  = v · σe · ne · NDL · [1 – f(EDL, T)]

With σe = scattering cross section (also called capture cross section) of the deep level for electrons.

For the other transition rate Reu we have to think a little harder. For the electron trapped at the deep level to go up to the
conduction band it needs a free place up there, hence:

Re u  = r' · (Neffe  – ne) · n– DL

With r' = some proportionality constant, principally different from r, and Neff e – ne = density of free places (which,
please remember, aren't holes!) in the conduction band.
Since ne is much smaller than Neffe, we may approximate this equation by

Reu  ≈ r' · Neffe · NDL · f(EDL, T)

We have not invoked some cross section and thermal velocity here, because the electron now is localized and doesn't
move around. We also used a different proportionality constant r' because the situation is not fully symmetric to the
reverse process. It is common to call the quantity ee = r' · Neffe the emission probability for electrons from the deep
level.

The emission probability contains the information about the generation of carriers from the deep level; in this it is
comparable to the generation rate from the valence band for the simple recombination theory considered above.

Now , if we assume that the transitions of conduction band electrons to the deep level and their re-emission to the
conduction band are in local equilibrium (which does not necessarily entail total equilibrium), we have Re u = Red.

From this we get – after a minimal shuffling of the terms – for the emission probability ee in local equilibrium:

ee  = 
v · σ e · ne · [1 – f(EDL, T)]

f(EDL, T)

Again, as in the case of the generation rate G for direct semiconductors, we may assume that the emission probability
ee is pretty much constant and this is a crucial point for what follows.
Since we want to find quantities like life times as a function of the density and energy level of the deep level, it is useful
to use the mid-band energy level as a reference, and to rewrite the equation for ee in terms of this mid-band level EMB
via the relations
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1  –  f(EDL, T)

f(EDL , T)
 = exp – 

EF  –  EDL

kT 

EMB  = 
EC – EV

2 

ni   =  Neffe  · exp – 
EC – EMB

kT 

These equations may need a little thought. The first one came up before in a similar way, the second simply defines
mid band-gap, and the last one uses the fact that the Fermi energy for intrinsic semiconductors is in mid band gap
(at least in a good approximation).

Using these equations, we first rewrite the formula for the density of electrons in the conduction band and obtain

ne  =  Neffe  · exp –
EC – EF

kT 

  = Neffe  · exp – 
EC – EMB

kT 

· exp – 
EMB – EF

kT 

  =  ni · exp 
EF – EMB

kT 

Putting everything together, we get for the emission probability

ee  =  v · σe · ni · exp
EDL – EMB

kT  

This is the best we can do to describe the traffic of electrons between the deep level and the conduction band.

Next, we do the matching calculation for the transitions rates with the valence band, Rhu and Rh d.

Except, we won't do it. Too boring – everything is quite similar. As the final result for the emission probability for
the holes, e h, we obtain exactly what we should expect anyway:

eh  =  v · σh · ni · exp
EMB – EDL

kT

The Net Interband Recombination
 

We captured the electron and hole traffic betwen a deep level and the conduction or valence band, respectively, with
these equations – always for local equilibrium of the deep level with the respective band. Now we consider the interband
generation and recombination rates, G and R .

This is exactly the same thing as the money traffic form one major bank to another one via an intermediate bank.
Each bank can deposit and withdraw money from all three accounts, while the total amount of all the money must
be kept constant. If it would be your money, you sure like hell would want to and be able to keep track of it. So let's
do it with electrons and holes, too.

With G we still denote the rate of electron–hole pair generation taking place directly between the bands; by thermal or
other energies, e.g. by illumination. It is thus the rate with which electrons and holes are put directly into the conduction
or valence band, no matter what goes on between the deep level and the bands.

We may, for some added clarity, decompose G into Gperfect, the generation always going on even in a hypothetical
perfect semiconductor, and Gne for whatever is added in non-equilibrium (e.g. the generation by light). We have G =
Gperfect + Gne .
After all, before we put in "our " deep levels or switched on the light, the hypothetically perfect crystal already must
have had some generation and recombination, too (for which Rperfect = Gperfect must hold). However, we can
expect that Rperfect is rather small in a perfect indirect semiconductor, which makes Gperfect rather small, too.
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The rate of change of the electron and hole density in their bands is then the sum total of all processes withdrawing and
depositing electrons or holes, i.e.

dne

dt
 = G perfect  +  Gne   –   Rperfect   + Reu  –  Red  =  Gne  –  (Red  –  Reu)

dnh

dt
 = Gperfect  +  Gne   –   Rperfect   +  Rhd  –  Rhu  = Gne  –  (Rhu  –  Rhd)

Note that G perfect – R perfect = 0 by definition.

Local equilibrium between the bands and the deep level, still not necessarily implying total equilibrium, now demands
that both dne/dt and dnh /dt must be zero.

That means that the density of electrons in the conduction band and the density of the holes in the valence band do
not change with time anymore. However, that does not mean that they have their global equilibrium value, only that
we have a so-called steady state (in global non-equilibrium) which, on the time scales considered, appears to keep
things at a constant value.
As an example, a piece of semiconductor under constant illumination conditions will achieve a steady state in global
non-equilibrium conditions. The carrier densities in the bands will be constant, but not at their equilibrium values if
light generates electron–hole pairs all the time.
This gives us the simple equation

Re d   –  Reu   =  Gne  =  Rhu  –  Rhd

Essentially, this says that the total electron or hole traffic or current [= difference of the partial rates (times elementary
charge)] from the conduction or valence band, respectively, to the deep level are identical and equal to the extra band-to-
band generation current produced in non-equilibrium for the given material and situation.

But steady state also implies that there must be an additional recombination exactly equal to Gne and that is of
course exactly what the terms Red  –  Reu or Rhu  –  Rhd denote: They are identical to the additional
recombination rates needed for balancing the additional generation Gne, or simply
We thus have

Red  –  R eu  = R  –  R perfect  = R  –  Gperfect   =: UDL

The quantity UDL is exactly analogous to the difference (R – G) defined for direct semiconductors.

UDL is also the difference between the recombination to a deep level and the emission from it. For the example
considered so far (additional generation via illumination) it must be positive, there is more recombination than generation

However, our treatment is completely general; UDL can have any value – if it is negative, we would have more
generation via deep levels than recombination.
Of course, UDL makes only sense for global non-equilibrium conditions, because for global equilibrium UDL must be
zero!

All we have to do now is to express the Re's with the formulas from above. Inserting the equations for the various R's,
the emission probabilities, and setting σe = σh = σ for the sake of simplicity, we get, after some shuffling of the terms,
the final equation

UDL  =  

v · σ · NDL · (ne · nh  –  ni2)

ne   +  nh  +  2ni · cosh
EDL – EMB

kT

The cosh (= hyperbolic cosine) comes from the sum of the two exponential functions. Its value is 1 for EDL = EMB ;
it increases symmetrically for deviations of EDL from the mid-level energy EMB.
A chain hanging down from two posts has exactly a cosh(x) shape – that's the way to memorize the general shape
of a cosh curve. If you want to look more closely at the cosh function, activate the link.
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The equation for UDL is quite similar to the one we had for direct semiconductors, as far as the numerator is concerned.
We will explore a little more what it implies.

For global equilibrium, the mass action law ne · nh = ni2 applies, and UDL = 0. In other words, there is no net
recombination, i.e. recombination in excess of what is always going on.
Without deep levels UDL = 0! The recombination rate then is fixed and simply Rperfect.

The recombination rate – everything else being constant – is directly proportional to the density of the deep levels
and their scattering cross section (or capture cross section as it is called in this case).
Since the recombination rate is highest for deep levels exactly in mid-band (look at the cosh function), defects with
levels near mid-band are more efficient in recombining carriers than those with levels farther off the mid-band
position.
 

Approximations and the Lifetime τ
 
As before, let's look at some special case. Again, we write the carrier densities as ne,h = n e,h(equ) + ∆n assuming
equal ∆ 's for electron and holes.

This gives us

U = v · σ ·N DL ·  
[ne(equ)  +  ∆n] · [nh(equ)  + ∆ n]  –  ni2

ne(equ)  +  nh(equ)  +  2 ∆n  +  2ni · cosh[(E DL – EMB) / (kT)]

Looking at a p-doped semiconductor and only considering the large densities nh as in the example before, we
obtain

U  = 
v · σ · NDL · nh(equ) · ∆ne

nh(equ)  +  2ni · cosh[(E DL – EMB) / (kT)]

Since ni is also much smaller than nh(equ) , we may neglect the whole cosh term, too – as long as cosh[(EDL –
EMB)/(kT)] is not large, i.e. for deep levels around mid-band.
As a consequence, nh(equ) cancels and we are left with

U  = v · σ · NDL · ∆ ne

Again, as before, the change in excess minority carrier density is given by d(∆ne)/dt = –U, giving

d(∆ ne)

dt
 =  – v · σ · NDL · ∆ ne

The solution of the differential equation now becomes trivial and we have

∆ ne(t)  = ∆ne (t = 0) · exp – 
  t   

τ

with τ = minority life time or better recombination life time in indirect semiconductors defined by

τ  =  
1

v · σ · NDL
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This is the same equation as before except that the density of the majority carriers (holes in the valence band for the
example) now is replaced by the density of (mid-band) deep levels.

That this formula is a useful approximation is shown in the two illustrations below:

 

Dependence of the life time on the deep level position
relative to the mid level – it is fairly constant (and small) as
long as the deep level is approximately in mid band.

Dependence of life time on deep level density – it is
linear as predicted. (The red curve is for p-Si, of
course.)

The picture on the right illustrates a sad fact hidden in all these equations: it doesn't take much dirt (or contamination,
to use the proper word) to considerably degrade the life time. Interstitial gold atoms obviously are felt at 1014 cm–3 , i.e.
at concentrations well below ppb.

More to Shockley–Read–Hall recombination can be found in an advanced module.
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2.3.4 Useful Relations

There is no way to cover all relevant semiconductor physics within the scope of this course. This subchapter provides
some important or useful relations needed for the understanding of the topics.

It also serves as the "gate" to a number of modules providing additional information.

This subchapter therefore is more open than the other ones; it will fill out and sprout a network in connection with
the lecture course that cannot be predicted by now.
 

Einstein Relation

We have encountered the Einstein relation before. It is of such fundamental importance that we give two derivations: one
in this paragraph, another one in an advanced module.
First, we consider the internal current (density) in a material with a gradient of the carrier density (ne or nh).

Fick's first law then tells us that the diffusion-driven particle current jp,diff is given by

jp,diff  =  – De,h · ∇ ne,h

If the particles are carrying a charge q, this particle current is also an electrical current (which obviously is a
diffusion current, then), given by

je,h  = q · jp,diff  = – q · De,h · ∇ ne,h

Considering only the one-dimensional case for electrons (i.e. q = –e; holes behave in exactly the same way with q
= +e), we have

je (x)  = e · De ·
dne(x)

dx

Since there can be no net current in a piece of material just lying around (which nevertheless might still have a density
gradient in the carrier density, e.g. due to a gradient in the doping density), the carriers displaced by diffusion always
generate an electrical field that will drive the other carriers back.

Any field E(x) ( written in mauve to avoid confusion with energies) now will cause a (so far one-dimensional) current
given by

j  = σ · E(x)  =  q · n(x ) · µ · E(x)

With σ = conductivity, µ = mobility.

Note that the result is always the technical current density, which is positive for positive charge carriers. Yet this
equation also works for electrons because for them, effectively, two minus signs cancel: one from their negative
charge and the other from their direction of movement opposite to the electric field. This means that in a strict
sense, their mobility should be negative. However, in this equation one only considers positive charges and positive
mobilities – also for electrons. Therefore, to use ths equation in full generality, we write it as

j  = e · n(x) · µ · E( x)

The total (one-dimensional) current in full generality is then

jtotal(x)  =  e · n(x) · µ · E(x )  –  q · D ·
dn( x )

dx

We will need this equation later.
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For our case of no net current and only fields caused by the diffusion current, both currents have to be equal in
magnitude:

e · n(x) · µ · E(x)  = q · D  ·  
dn(x)

dx

This is an equation that comes up repeatedly; we will encounter it again later when we derive the Debye length.

Note that in this equation, the sign on the right-hand side depends on the type of charge carriers (since q = ±e).
This is balanced on the left-hand side by the direction of the electric field.

Now we are stuck. We need some additional equation in order to find a correlation between D and µ.

This equation is the Boltzmann distribution (here used as an approximation to the Fermi distribution), because we
have equilibrium in our material.
However, we also know that, in this equilibrium situation, we have spatially varying charge carrier densities and
electric fields. We know such a situation from the p–n junction in equilibrium. There, this was only possible due to
the band bending, i.e. that the band edges were functions of the lateral position. This we also consider here.
Just to derive the relation to the electric field in the above equation, for the moment we just consider the case of
electrons as majority carriers. For their local density it holds that

n(x )  = Neff · exp – 
EC(x) – EF

kT

Differentiation of the Boltzmann distribution gives us

dn

dx
 = – Neff · 1/(kT) ·

dEC(x)

dx
  · exp – 

EC(x) – EF

kT
      

dn

dx
 =  – n(x) · 1/(kT) ·

dEC(x )

dx
  

The slope of the conduction band comes directly from the spatially varying electric potential V (x); to convert the
electric potential to the absolute energy of a charge carrier, the elementary charge e is needed as an additional
factor. From the p–n junction we know that the sign (i.e., the direction) of the electric field is identical to that of the
slope of the conduction band. Thus, altogether we have

E(x)  =  – 
dV(x)

dx
  =  1/e ·

dEC(x)

dx

Using this relation, the current balance from above becomes

e · n(x) · µ · E(x)  = q · D ·
dn(x )

dx
     

e · n(x) · µ · E(x)  = – q · n(x) · D · e/(kT) · E(x)
     

D  = µkT/e

In words: Equilibrium between diffusion currents and electrical currents for charged particles demands a simple, but
far reaching relation between the diffusion constant D and the mobility µ.

Distinguishing again between electrons and holes gives as the final result the famous Einstein–Smoluchowski
relations:
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De  = 
µe · kT

e
   

Dh  = 
µh · kT

e

You may want to have a look at a different derivation in an advanced module.

 

Non-Equilibrium Currents
  

In the consideration above we postulated that there is no net current flow; in other words, we postulated total
equilibrium. Now let's consider that there is some net current flow and see what we have to change to arrive at the
relevant equations.
In order to be close to applications, we treat the extrinsic case and, since we do not assume equilibrium per se, we
automatically do not assume that the carrier densities have their equilibrium values n e(equ) and nh(equ), but arbitrary
values that we can express by some Delta to the equilibrium value. We thus start with

ne  = ne (equ) + ∆ne

nh  = nh(equ) + ∆nh

Since carriers above the equilibrium density are often created in pairs we have for this special, but rather common
case

∆ne  = ∆ nh  = ∆n
     

∆ n  = ne –  ne(equ)  =  nh –  nh(equ)

This is a crucial assumption!
This allows us to concentrate on one kind of carrier, let's say we look at n-type Si with electrons as the majority
carriers. We now focus on holes as the minority carriers since we always can compute the electron density ne by

ne  = ne(equ) + ∆ne  = ne(equ) + nh – nh (equ)

We now must consider Fick's second law or the continuity equation (it is the same thing for special cases, but
the continuity equation is more general).

For the net (mobile) charge density ρ (which is the difference of the electron and hole density, ρ = e · (nh – ne),  in
contrast to the total particle density, which is the sum !) we have

∂ρ

∂t
 = – div (jtotal)

With jtotal = je + jh = sum of the electron and hole currents.

In the simplest form we have for the holes

∂n

∂t
 = – (1/e) · div (jh)

The factor 1/e is needed to convert an electrical current j to a particle current jpart via  j = q · jpart, with q = ±e. Here,
as always, we have to pick the right sign for the elementary charge e (negative for electrons, positive for holes).
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This is simply the statement that the charge is conserved. It would be sufficient that no holes disappear or are
created in any differential volume dV considered, i.e. div jh = 0, to satisfy that condition.

But this is, of course, a condition that we know not to be true.

In all semiconductors, we have constant generation and recombination of holes (and electrons) as discussed before.
In in equilibrium, of course, the generation rate G and the recombination rate R are equal, so they cancel each other
in a balance equation and need not be considered – since div jh = 0 is correct on average.
We are, however, considering non-equilibrium , so we must primarily consider the recombination of the surplus
minority carriers given by

∆nh  = nh – nh(equ)

Why? Because, as stated before, the generation essentially does not change, so it still balances against the
recombination rate of the equilibrium density, and only the recombination rate of the surplus minorities, R∆ = [nh –
nh(equ)]/τ needs to be considered (τ is the minority carrier life time).
R ∆ = [nh – nh(equ)]/τ is the rate with which carriers disappear by recombination, we thus must subtract it from the
carrier balance as expressed in the continuity equation, and obtain

dn

dt
 =  –  

nh   –  nh(equ)

τ
 –  (1/e) · div (jh)

The current j can always be expressed as the sum of a field current and a diffusion current as we did above by

jh,total(x)  = e · n(x) · µ · Ex( x)  –  e · Dh ·
dnh(x)

dx

Inserting this equation in our continuity equation yields

∂nh (x)

∂ t
 =  – 

nh(x) – nh(equ)

τ
 –  nh(x) · µ ·

∂E(x )

∂x
  –  E( x) · µ ·

∂n h(x)

∂ x
 +  D ·

∂ 2nh( x)

∂ x2

This is an important, if not so simple equation. It is not so simple, because the electrical field strength E(x) at x is a
function of the carrier density nh(x) at x, which is what we want to calculate! We have used the symbols for partial
derivatives ("∂ ") to emphasize that it is in reality a three-dimensional equation.

We will now look at some applications of this equation.

 

Pure Diffusion Currents
  

Consider the minority carrier situation just outside of the space charge region of a biased p–n
junction.

If it is forwardly biased, a lot of majority carriers are flowing to the respective
other side where they become minority carriers. They will eventually disappear
by recombination, but the minority carrier density right at the edge of the space
charge region will be larger than in equilibrium and will decrease as we go away
from the junction.
This is now shown in the illustration used before in the simple model of the p–n
junction, but the realistic minority carrier situation is now included.
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The region outside the space charge region, while now showing a density
gradient of the minority carrier density, is essentially field free or at least has
only a small electrical field strength.

If we let Ex = 0 and consequently ∂Ex (x)/∂x = 0, too, the current equation from above reduces to

∂nh

∂t
 =  –  

nh  –  nh (equ)

τ
 +  D ·

∂2nh ( x)

∂x2

Since ∂nh/∂t = ∂[nh(equ) + ∆nh]/∂t = ∂∆nh/ ∂t, and correspondingly ∂2n h(x)/∂x2 = ∂ 2∆nh(x)/∂ x2, we have

∂∆ nh

∂t
 =  –  

∆ nh

τ
 +  D ·

∂2∆ nh(x)

∂ x2

If we consider steady state , we have ∂∆nh/∂ t = 0, and the solution of the differential equation is now mathematically
easy.
But how can steady state be achieved in practice? How can we provide for a constant , non-changing density of minority
carriers above equilibrium?

For example by having a defined source of (surplus) holes at x = 0. In the illustration this is the (constant) hole
current that makes it over the potential barrier of the p–n junction.
But we could equally well imagine holes generated by light a x = 0 at a constant rate. The surplus hole density then
will assume some distribution in space which will be constant after a short initiation time - i.e. we have steady state
and a simple differential equation:

D ·
∂2[∆ nh(x)]

∂x2
 –  

∆ nh(x)

τ
 = 0

The solution (for a one-dimensional bar extending from x = 0 to x = ∞) is

∆n(x)   = ∆n0 · exp –
 x 

L

The length L is given by

L  = Dh · τ


1/2

L is simply the diffusion length of the minority carriers (= holes in the example) as defined in the "simple" (but in this
case accurate) introduction of life times and diffusion length.
This solution is already shown in the drawing above which also shows the direct geometrical interpretation of L.

The important point to realize is that the steady state tied to this solution can only be maintained if the hole current at x
= 0 has a constant, time independent value resulting from Fick's 1st law since we have no electrical fields that could
drive a current.

This gives us
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jh(x = 0)  =  –  e · D
∂ ∆nh(x)

∂ x




x = 0

By simple differentiation of our density equation from above we obtain

∂ ∆nh(x)

∂ x




x = 0

 =  –  
∆n0

L

Insertion into the current equation yields the final result

jh (x = 0)  =  
e · Dh

Lh

  · ∆nh(x = 0)

The physical meaning is that the hole part of the current will decrease from this value as x increases, while the total
current stays constant – the remainder is taken up by the electron current.
 

General Band-Bending and Debye Length
  

The Debye length and the dielectric relaxation time are important quantities for majority carriers (corresponding to the
diffusion length and the minority carrier life time for minority carriers). Let's see why this is so in this paragraph.

Both quantities are rather general and come up whenever density gradients cause currents that are counteracted by
the developing electrical field.
An alternative simple treatment of the Debye length can be found in a basic module.

Let us start with the Poisson equation for an arbitrary one-dimensional semiconductor with a varying electrostatic
potential V(x) caused by charges with a density ρ(x) distributed somehow in the material. We then have

– ε · ε0 ·
d2 V(x)

dx2
 = ε · ε0 ·

d E(x)

dx
 =  ρ(x)

E(x) is the electrical field strength; always minus the derivative of the potential V.

The charge ρ(x) at any one point can only result from our usual charged entities, which are electrons, holes, and
ionized doping atoms. ρ(x) is always the net sum of this charges, i.e.

ρ(x)  =  e · nh(x) + ND+(x) – [ne (x) + NA–( x)] 


The electrostatic potential V needed for the Poisson equation is now a function of x and shifts the conduction and
valence band by the potential energy qV relative to some reference point for which one has V = 0. Since the band
structure refers to the energy of electrons, we have that q = –e and thus may write

EC (x)  = EC( V = 0) – e · V(x)
   

E V(x)  = EV(V = 0) – e · V(x)

Thereby, the Poisson equation becomes

– ε · ε0 ·
d2V (x )

dx2
 = 

ε · ε0

e
 · 

d2 EC (x)

dx2
 =  e 

n h(x) + ND+(x) – [ne( x) + NA–( x)] 

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If we now insert the proper equations for the four densities, we obtain a formidable differential equation that is of
prime importance for semiconductor physics and devices, but not easy to solve.
However, even if we could solve the differential equation (which we most certainly cannot), it would not be of much
help, because we also a need a "gut feeling" of what is going on.

The best way to visualize the basic situation is to imagine a homogeneously doped semiconductor with a fixed charge
density at its surface and no net currents (think of a fictional insulating layer with infinitesimal thickness that contains
some charge on its outer surface).

Carriers of the semiconducor thus can not neutralize the charge, and the surface charge will cause an electrical field
which will penetrate into the semiconductor to a certain depth.
This is the most general case for disturbing the carrier density in a surface-near region and thus to induce some
band-bending .

There are two distinct major situations:

1. The surface charge has the same polarity as the majority carriers in the semiconductor, thus pushing them into the
interior of the material.

This exposes the ionized dopant atoms with opposite charge and a large space charge layer (SCR) will built up.
This is also called the depletion case.
The SCR is large because the dopant density is low and the dopant atoms cannot move to the interface. Many
dopant atoms have to be "exposed" to be able to compensate the surface charge; the field can penetrate for a
considerable distance.
However: In contrast to what we learned about SCRs in p–n junctions, even for large fields (corresponding to large
reverse voltages at a junction), the Fermi energy is EF still constant (currents are not possible). The bands are still
bent, however, this means that EC – EF incrases in the direction toards the surface.
If the majority carrier density then is becoming very small in surface-near regions (it scales with exp [– (EC – EF )/
(kT)] after all), the minority carrier density increases due to the mass action law until minority carriers become the
majority – we have the case of inversion .

2. The surface charge has the opposite polarity as the majority carriers in the semiconductor, thus accumulating them
at the surface-near region of the material.

Then majority carriers can move to the surface near region and compensate the external charge. The field cannot
penerrate deeply into the material.
This case is called accumulation.

The situation is best visualized by simple band diagrams, we chose the case for n-type materials. The surface charge is
symbolized by the green spheres or blue squares on the left.

Between depletion and accumulation must be the flat-band case as another prominent special case. This is not
necessarily tied to a surface charge of zero (as shown in the drawing where a blue square symbolizes some positive
surface charge), but for the external charge that compensates the charge due to intrinsic surface states.
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We have some idea about the width of the space charge region that comes with the depletion case. But how wide is the
region of appreciable band bending in the case of accumulation?

Qualitatively, we know that it can be small - at least in comparison to a SCR - because the charges in the
semiconductor compensating the surface charges are mobile and can, in principle, pile up at the interface

For the quantitative answer for all cases, we have to solve the Poisson equation from above. However, because we
cannot do that in full generality, we look at some special cases.
First we restrict ourselves to the usual case of one kind of doping – n-type for the following example – and temperatures
where the donors are fully ionized, which means that the Fermi energy is well below the donor level or ED – EF >> kT.

We then have only two charged entities:

ND +  = ND  
   

ne  = Neffe  · exp –
EC – EF

kT 

This means in what follows we only consider the majority carriers.

The Poisson equation then reduces to

ε · ε 0

e
  · 

d2EC (x)

dx2
  =    e 

ND –  Neffe  · exp –  
EC( x) – EF

kT 




And this, while special but still fairly general, is still not easy to solve .

We will have to specialize even more. But before we do this, we will rewrite the equation somewhat.

For what follows, it is convenient to express the band bending of the conduction band in terms of its deviation from
the field-free situation, i.e. from EC0 = EC(x = ∞ ). We thus write

EC(x)  = EC0 + ∆EC(x)

The exponential term of the Poisson equation can now be rewritten, we obtain

Neffe  · exp –
EC(x) – EF

kT 

 = N effe  · exp –
EC0 – EF

kT 

· exp –
∆E C(x )

kT 

The first part of the right hand side gives just the electron density in a field-free part of the semiconductor, which – in
our approximations – is identical to the density ND of donor atoms. This leaves us with a usable form of the Poisson
equation for the case of accumulation :

d2EC

dx2
 = 

d2 ( ∆EC )

dx2
 = 

e2 · ND

ε · ε0

 · 




1  –  exp 
–

∆ EC

kT







∆EC characterizes the amount of band bending. We can now proceed to simplify and solve the differential equation by
considering different cases for the sign and magnitude of ∆ EC .

Unfortunately, this is one of the more tedious (and boring) exercises in fiddling around with the Poisson equation.
The results, however, are of prime importance – they contain the very basics of all semiconductor devices.

We will do one approximative solution here for the most simple case of quasi-neutrality which will give us the all-
important Debye length.

The other cases can be found in advanced modules:

Depletion
Inversion
Accumulation
Putting everything together
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Quasi-neutrality is the mathematically most simple case; it treats only small deviations from equilibrium and thus from
charge neutrality.

The condition for quasi-neutrality is simple: We assume |∆EC| << kT.

We then can approximate the exponential function by its Taylor series and stop after the second term. This yields

d2(∆EC)

dx2
 = 

e2 ·ND

ε · ε0

 · 
∆EC

kT

That is easy now, the solution is

 

∆EC(x)  = ∆EC (x = 0) · exp –
x 

LDb

The solution defines LDb = Debye length for n-type semiconductors = Debye length for electrons, we have

LDb  = √ε · ε 0 · kT

e2 · ND

Obviously the Debye length LDb for holes in p-type semiconductors is given by

LDb  = √ε · ε 0 · kT

e2 · NA

For added value, our solution also gives the field strength of the electrical field extending from the surface charges into
the depth of the sample.

Setting it to zero at the top of the valence band in the p-type material (as it is conventionally done), the electrostatic
potential is related to the conduction band edge by EC (x) = Eg – e · V(x). As discussed already above, the minus
sign stems from the negative charge of an electron.
Since the field strength E(x) is minus the derivative of the electrostatic potential, we now have

E(x)  =  – 
dV(x)

dx
  =  1/e ·

dEC(x)

dx
 =  – 

1 

 e · LDb

 · ∆EC(x)

Note that in the case of accumulation at the surface of an n-type semiconductor, ∆ EC(x) is negative, so the electric
field comes out positive – in full agreement with the surface (at x = 0) being positively charged in this case.

The Debye length gives the typical length within which a small deviation from equilibrium in the total charge density –
which for doped semiconductors is always dominated by the majority carriers – is relaxed or screened; in other words, it
is no longer felt.

LDb is a direct material parameter – its definition contains nothing but prime material parameters (including the
doping).
For medium to high doping densities, it becomes rather small. The dependence of the Debye length on material
parameters is shown in an illustration.
The Debye length is also a prime material quantity in materials other than semiconductors - especially in ionic
conductors and electrolytes (for which it was originally introduced). It also applies to metals, but there it is so small
that it rarely matters.

The Debye length comes up in all kinds of equations. Some examples are given in the advanced modules dealing with
the other cases of field-induced band bending
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The Debye length is to majority carriers what the diffusion length is to minorities. And just as the diffusion length is
linked to the minority carrier lifetime τ , the Debye length correlates to a specific time, too, called the dielectric
relaxation time τd .
This will be the subject of the next paragraph.

 

Dielectric Relaxation Time
  

Let's start from the same situation that lead to the Debye length: A doped semiconductor, all dopants ionized, and
some small disturbance in the charge equilibrium expressed as some small ∆ρ(x, t) somewhere, starting at some time
t0; i.e. we still assume quasi-neutrality.

The Poisson equation now is extremely simple, we write it directly for the electrical field strength and have

dE(x, t)

dx
  =  

∆ρ(x, t) 

ε · ε0

We now want to find out about how long it takes to establish a steady state, so we need some expression for d(∆ρ)/dt.
The Poisson equation won't help because it does not explicitly contain the time dependence.

But simply using the continuity equation for the relevant charge density ∆ρ provides a d(∆ρ)/dt term. Since we are
treating quasi-neutrality, we neglect all terms with gradients in the carrier density (this will turn out to be fully
justified).
Since the only relevant current is the drift curent j(x) = σ E(x) = ρ · µ · E(x), this leaves us with the following
continuity equation

∂ (∆ρ)

∂ t
  =  – ρ · µ ·

∂E (x)

∂x

Inserting dE/dx from the Poisson equation gives

∂(∆ρ )

∂t
 =  – 

ρ · µ

ε · ε0

 · ∆ρ

ρ is the total carrier density, we can write it as ρ = ρ0 + ∆ρ ≈ ρ 0 since we have quasi neutrality; µ, as always, is
the mobility of the carrier in question.

This is a differential equation for ∆ρ(x, t) with the simple solution

∆ρ(x, t)   =  ∆ρ (x, 0) · exp – 
t 

τd

τd   =  
ε · ε0

µ · ρ0

With τd = dielectric relaxation time = another basic material constant for the same reason as the Debye length.

The dielectric relaxation time tells us exactly what we wanted to know: How long does it take for the majority
carriers to respond to a disturbance in the charge density.

While this definition of some special time is of some interest, but not overwhelmingly so, the situation gets more
exciting when we consider relations between our basic material constants obtained so far:

Since µ · ρ = σ , the conductivity of the material (for the carriers in question), we have the simple and fundamental
relation
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τd  = 
ε · ε0

σ 

Now let's see if there is a correlation to the Debye length:

We use the Einstein relation D = µ(kT/e), the Debye length definition (LDb = {(ε · ε0 · kT)/(e · ρ )}1/2, pluck it into
the definition of the dielectric relaxation time (again replacing e · ND by ρ) and obtain

τd  = 
LDb2

D 

   

LDb  = √ D · τd  

This is exactly the same relation for the majority carriers between a characteristic time constant and a length as in
the case of the minority carriers where we had the minority lifetime τ and the correlated diffusion length L.
The physical meaning is the same, too. In both cases the times and lengths give the numbers for how fast a
deviation from the carrier equilibrium will be equalized and over which distances small deviations are felt.

This merits a few more thoughts.

If the carrier density is high, τd is in the order of picoseconds and LDb extends over nanometers. Any deviation from
equilibrium is thus almost instantaneously wiped out, or, if that is not possible, contained within a very small scale.
And this is the regular situation for majority carriers. The few minority carriers always present in the semiconductor,
too, can be safely neglected.

For minority carriers, however, the situation is entirely different.

Their density is very small; τd and LD consequently are no longer small.

Moreover, whatever disturbance occurs in the density of minorities, there are plenty of majorities that can react very
quickly (with their τd) to the electrical field always tied to a ∆ρmin.

The majority carriers are always attracted to the minorities and thus will quickly surround any excess minority charge
with a "cloud" of majority carriers (which is called screening), essentially compensating the electrical field of the excess
minorities to zero.

They will, of course, eventually remove the excess charge by recombination, but that takes far longer than the time
needed to do the screening.
Since the electrical field is now zero, the excess charge cannot disappear or spread out by field currents – only
spreading by diffusion in the density gradient (which is automatically introduced, too) is possible.

But this is exactly the process that we have neglected in this discussion (we had all density gradients in the continuity
equation set to zero!).

Dielectric relaxation (i.e. the disappearance of charge surpluses driven by electrical fields) is thus not applicable to
minority carriers. Charge equilibration there is driven by diffusion - which is a much slower process!
This then justifies the simple approach we took before, where we only considered the diffusion of minorities and did
not take into account the majority carriers.
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2.3.5 Junction Reconsidered

In this section we will give the p–n junction a new look using a somewhat more advanced point of view.

A full treatment of p–n junctions in any kind of three-dimensional semiconductor, taking into account arbitrary
doping profiles , finite size, and effects of the interfaces and surfaces, is one of the more difficult things to do in
semiconductor theory; we will not attempt it here.
In all standard treatments of junctions, we always look at special (unrealistic) cases and use (lots of)
approximations. This, admittedly, can become somewhat confusing.
It is thus very advisable to become really well acquainted with the simple treatments given in section 2.2.4; this will
clear the mind for the essentials.

Junction Without Contributions from the Space Charge Region

Here we look at an advanced treatment of a p–n junction, but we still will have to make some simplifications.

We consider a "narrow " "abrupt" one-dimensional junction in an infinitely long crystal, which is formed by a sudden
change of doping, i.e. there are no gradients of the doping densities ND and NA to the left or right of the junction.
"Narrow" then means that the width of the space charge layer is much smaller than the diffusion length of minority
carriers, but still much larger than the mean free path length needed for the thermalization of carriers.
In consequence, we do not consider recombination in the SCR, and we can assume thermal equilibrium in the
bands, i.e. we can use the quasi-Fermi energies.

First, we look at the junction in equilibrium, i.e. there is no net current and the Fermi energy is the same everywhere (we
have the same situation as shown before; but for diversity's sake, the p- and n-side reversed).

In what follows, there will be a lot of shuffling formulas around – and somehow, like by magic, the I–V characteristics of
a p–n junction will emerge. So let's be clear about what we want to do in the major steps (highlighted by the cyan
background).
The first basic goal is to find an expression for the carrier density at the edge of the space charge region.

We know in a qualitative way from the consideration of pure diffusion currents that the minority carrier density
around the edge of the space charge region is somewhat larger than in the bulk under equilibrium conditions – there
is a ∆nmin given by ∆nmin = nmin(x) – nmin(bulk), and ∆nmin will increase for forward bias, i.e., for non-
equilibrium conditions.
We also know that ∆nmin induces a diffusion current and that we therefore need a "real" current to maintain a
constant ∆nmin. Finding ∆n min thus will automatically give us the necessary currents belonging to the non-
equilibrium as defined by the voltage.

We first look at the various energies involved:

The energy difference between the left side (= p-side, raised index "p") and the right side (= n-side, raised index "n")
of the junction is given by

EC p – ECn  = EVp – EVn  = e · ∆V

Here, ∆V is the difference of the (yet-to-be-determined) electrostatic potential between the n- and p-side, taken far
away from the junction; the details (especially about its sign) will be given below.

The band energy levels ECn,p( x) and the potential V(x) are functions of x, which makes all densities functions of x, too.
We will, however, write all these quantities without the "(x)" from now on.

As long as we discuss equilibrium, the Fermi energy is constant and the carrier densities are given by their usual
expression. We consider them separately for the left- and right hand side of the junction, i.e., for the n- and p-part.
(Note that here the usual minus sign in the exponent was used to change the order of the terms in the differences.)
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nep  = Neffe  · exp  
EF  –  EC p

kT 
 density of

electrons on the p-side 

  

nhp  = Neffh  · exp 
EVp  –  EF

kT 

density of
holes on the p-side

      

nen  = N effe  · exp  
EF   –  ECn

kT 

density of
electrons on the n-side

      

nhn  = Neffh   · exp  
EVn  –  EF

kT 

density of
holes on the n-side

We also have the mass action law, here applicable everywhere since we are in full equilibrium:

ne p · nhp  = nhn · nen  = nmin · nmaj    = ni2

    = Neffe · Neffh · exp –
Eg

kT

What we need to know to get on is the x-dependence of the energies or of the potential V(x) – this simply means we
need the quantitative band diagram that so far we always just drew "by feeling". (This is one of the essential points why
we reconsider the p–n junction here; the other one will be the usage of the quasi-Fermi energies.)

For this we need to solve the Poisson equation and this demands to specify the total charge ρ(x) so that we can
write down the charge as a function of x. This is easy in principle:

The total (space) charge ρ(x) at any point along the junction is the sum of all charges: Electrons (ne(x)), holes (nh(x)),
ionized donors (ND+(x )), and ionized aceptors (NA–(x)). We have as before

ρ(x)  =  e · nh(x)  –  ne(x)  +  N D+(x) –  NA– (x) 


Inserting ρ(x) into the Poisson equation gives

  –  
ε ε0

e 

  ·  
d2V(x )

dx2
 = nh(x)  –  ne(x)  +  ND+(x)  –  NA– (x)

Solving this equation with the proper boundary conditions will yield V(x) and everything else – but not so easily
because the situation is complicated: Since nh(x) and ne(x) depend on V(x) via the Fermi distribution, this is also
an implicit equation for V( x).
It is, however, not too difficult to find good approximations for "normal", i.e. highly idealized junctions; this is shown
in an advanced module accessible through the link.

For our final goal, which is to describe the current–voltage characteristic of a p–n junction, we use the same
approximations and conventions, namely:
1. The zero point of the electrostatic potential is identical to the valence band edge in the p-side of the junction, i.e. eV
p = EVp = 0 as shown in the complete illustration to the situation shown in the picture above. This is a simple
convention without any physical meaning.
2. All dopants are ionized, their density is constant up to the junction, and there is only one kind on each side of the
junction, i.e.
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nh p(bulk)  = NA  = NA–

     
n en(bulk)  = N D  = ND+

This is a crucial assumption. Note that while nh,ep,n (bulk) are constant, this is not required for nh,ep,n(x) around
the junction.

3. We also assume that away from the junction, the Si extends into infinity (or at least to a distance much larger than
several diffusion lengths) to both sides of the junction – in total we use the "abrupt" "large" junction approach

This gives us for the carrier densities in equilibrium anywhere in the junction:

nh(x)  = N A · exp – 
e · V(x)

kT 
       

    

ne(x )  = ND · exp – 
e · [Vn  –  V(x)]

kT

Here, Vn is the constant value of the potential deep in the n-type region. Note that, having chosen the zero point for
V(x) at the p-side of the junction where there is the negative pole of the electric field, it holds inside the SCR that 0
≤ V(x) ≤ Vn.
These equations mean that the carrier density is whatever you have in the undisturbed p- or n-part (i.e., the dopant
density) times the Boltzmann factor of the energy shifts relative to this situation.

Vn is the difference of the built-in potential for equilibrium conditions, it is thus determined by the difference in the Fermi
energies of the n- and the p-side before contact (relative to the band edges) – our simple view of a junction is totally
correct on this point.

With and without an external voltage Uext we have

Vn(Uext=0)  = 
1

e
 · (EFn  –  EF p)

     

Vn(Uext)  = 
1

e
 · (EFn  –  EFp  +  e · Uext )

Here, the sign of Uext is such that a positive external voltage increases the built-in potential difference. Note that
this is just an interim choice; later on we will replace it by the usual standard.
In the general case, the maximum potential at the n-side, Vn(bulk), becomes

Vn(bulk)  = V n(Uext=0) + Uext  = 
1

e
 · ∆EF + Uext  =  Vn + Uext  =  ∆V

Looking at the proper solution of the Poisson equation for our case, we realize that the space charge region was
defined as the part of the Si where the potential was not yet constant. This means that Vn (bulk) = Vn|SCR edge on
the n-side, and Vp |SCR edge = 0. This is an essential point, even so it is matter-of-course.

We now can move towards our primary goal and find an expression for the carrier density at the edge of the SCR by
considering the ratio of a carrier species on both sides of the junction. From the equations above, we obtain for the edge
of the SCR :

nep

nen





SCR
edge

  =   
nhn

nh p





SCR
edge

  =  exp –
 e · ∆V 

kT
  =  exp –

e · (Vn  +  Uext)

kT
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The minority carrier densities (always at the edge of the SCR without indicating it anymore) can now be written as

nep(Uext )  = nen ( Uext) · exp –
e · (Vn + Uext)

kT
 electrons on

the p-side

      

nhn(Uext)  = nhp(Uext) · exp –
e · (Vn + Uext)

kT

holes on
the n-side

These equations are nothing but the Boltzmann distribution giving the number of particles (nmin) that make it to the
energy e(V n + Uext) out of a total number nmaj – in thermal equilibrium. We used essentially the same equation
before, but now we know the kind of approximations that were necessary and that means we also know what we
would have to do for "better" solutions of the problem.

Since this is important, let's review the approximations we made:

Besides the "abrupt" "large" junction, we used the approximations from the simple solution to the Poisson equation
which implies that the potential stays constant right up to the edge of the SCR and then changes monotonously.
This means that for equilibrium we must obtain the same equations by computing the minority carrier density from
the mass action law, i.e.

nep(Uext=0)  = 
ni2

nhp(Uext=0)

We will see if this is true in a little exercise:

Exercise 2.3.5-1
Show the equivalence of the two

equations
for the minority carrier density!

Now comes a crucial point: We are looking at stationary non-equilibrium. We first review the starting point again:

At equilibrium (Uext = 0), the majority carrier densities ne n |SCR edge and n hp |SCR edge are given by

nhp  = Neffp · exp – 
EF

kT 
       

    

nen  = Neffe · exp + 
EF  –  ECn

kT  

Do you remember them? These are two of our first equations from above, but given here for the choice of EV p = 0.

The essential point for the majority carrier density at the edge of the space charge region for non-equilibrium is that it
remains practically unchanged (approximately at its bulk value) if we now apply a voltage Uext, i.e.

ne,h n,p(Uext)



SCR
edge

 = ne,hn,p(equ) 
SCR
edge

 = ne,hn,p(bulk)

The trick here is that we consider the majority carrier density at the SCR edge – and the position of the latter may
vary with the applied voltage!
Nevertheless, beyond that point we have the bulk behaviour of the majorities – because that's how we have defined
the SCR edge: The bulk potential stays constant right up to the edge, and this is only possible for a constant
density of majority carriers.

The minority carrier densities nep |SCR edge and nhn |SCR edge, however, depend very much on the applied voltage as
expressed in the formulae above.
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Thus, we have to adjust the minority carrier density independent of the majority density, which means we have to
use the quasi-Fermi energies.
In other words: While the quasi-Fermi energy EF maj for majority carriers remains at the equilibrium value EF near
the SCR, the quasi-Fermi energy for the minority carriers, EFmin, branches off early; the details will be shown
below.

We now ask about the difference of the minority carrier density relative to equilibrium, i.e. we look at

∆ne,hp,n 


SCR
edge

 = ne,hp,n(Uext)  –  ne,hp,n(Uext=0)  

It comes out as

∆ne,hp,n  = ne,hn,p  ·




exp – 
e · (Vn + Uext )

kT
  –   exp – 

eVn

kT





       

  = n e,hn,p · exp – 
eVn

kT
· 




  exp –
eUext

kT
– 1   





Inserting the general expressions for the minority carrier density from above for the case U ext = 0 yields the final
formula for our first goal:

∆ne,hp,n 
SCR

edge

 = n e,hp,n(equ) ·




exp –
e Uext

kT
  –  1





In other words: The density of minority carriers at the edge of the SCR will be changed by an external voltage.

In steady state conditions (which does not imply equilibrium, just that nothing changes) this density must remain
constant as a function of time.

Since deep in the material the minority carrier density is unchanged and has its equilibrium value, we now must
have a current, driven by the density gradient alone, and this current must be maintained by the voltage/current
source if we want steady state.
Physically speaking, the excess density of minority carriers will diffuse around and disappear after some diffusion
lengths – deep in the material they are not noticeable any more.

This is exactly the situation treated under "useful relations" for pure diffusion currents.

We can take the formula derived there with ∆np,ne,h(x=0) given by the equation from above and obtain immediately
for the current–voltage relationship of a p–n junction (just considering the absolute magnitudes):

| je(Uext) |  = 
e · De

Le

 · ∆ ne

SCR

edge  
or  

| je(Uext) |  = 
e · De

Le

 · nep(equ) ·  




exp –
eUext

kT
  –  1  





| jh(Uext) |  = 
e · Dh

Lh

 · nhn(equ) ·  




exp –
eUext

kT
  –  1  





We now see that the external voltage, as we have introduced it, raises the potential barrier and therefore decreases the
minority carrier density – and, thus, also the current flow.

This means that, in order to enhance the current flow over the p–n junction, we have to apply the external voltage in
a way that it lowers the barrier.
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Therefore, the forward voltage is UD := –U ext, and since it is the forward voltage, it is also the one which is taken as
positive; the subscript "D" refers to the p–n junction functioning as a diode.

For the final result we add the electron and hole currents, drop suffixes and functional arguments now unnecessary, and
obtain the diode equation (giving the total current density, including the reverse current, counted in the standard way):

jD(UD)  = 




e · nep · De

Le

  +  
e · nhn · Dh

Lh





 ·  




exp
eUD

kT 
  –  1





This is the same equation as before if we take into account that the pre-exponential factor can be written in many ways.
To see that, we use the following identies:

For the diffusion length we have

Le,h  = De,h · τe,h

  

1/2

 De,h  = 
Le,h2

τe,h

 

τe,h = 
Le,h2

De,h

   

From the mass action law, which is still valid for the bulk, and the general approximation for the majority carrier
density (that is already contained in our equations) we get

ne,hp,n  = 
ni2

nh,ep,n

   

n ep  = 
ni2

NA
   

n hn  = 
ni2

ND

Shuffling everything around with these identities gives us – among many other equivalent formulations – . . .

jD(U D)  = 




e · Le· ni2

τe· NA

 +  
e · Lh· ni2

τh · ND





 ·




exp
e UD

kT 
  –  1





. . . and that is exactly the equation we got before! However, we did not have to "cut corners" this time and we did
not have to assume that some proportionality constant equals 1!

More important, however: The interpretation of what happens may now be different. Different in the sense of looking at
one and the same situation from a different point of view, not different in the sense that it is something else. The two
points of view are complementary and not mutually exclusive; neither one is wrong!

In the simple picture we looked at the minority carriers that had to be generated to account for the loss of carriers
accounting for the reverse current and running down the energy slope.
Here we looked at the surplus of minorities accounting for the forward current and which has to be moved away from
the junction.
Think about why this is the same thing! (Hint: Start from UD = 0.)
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What is left is just to consider the quasi-Fermi energies relevant for the forward direction; not only was the relevant
drawing promised already above, it will also show explicitly what is meant by "surplus of minorities, having to be moved
away from the junction" – because it will show us where those minorities end up.

To cut a long story short, here it is:

That the quasi-Fermi energies of the majorities remain constant throughout the SCR corresponds to the expressions
giving the ratio of each carrier type on both sides of the junction.

Note that in the dawing, deliberately there are more minority carriers close to the SCR edges than deeper in the bulk.
Yes, that's where the surplus minorities go. But that's not the end of the story:

That the quasi-Fermi energies of the minorities outside the SCR linearly merge towards the majorities' ones
corresponds to the exponential decay of the surplus minority density away from the SCR, with the decay constant
given by the diffusion length – as already discussed for the case of pure diffusion currents.
Think for yourself about why all this is the case! And think about the possible consequences of the surplus
minorities' presence in the case of a direct semiconductor.
 

Contributions from the Space Charge Region
  

We now should include the generation currents from the space charge region, as we did (in a somewhat fishy way)
in our simple consideration of a junction.

This, however, is not so easy to do in a correct (albeit still very approximate) fashion.

For the reverse part of the generation current from the SCR, we can obtain an equation directly from the Shockley-Read-
Hall theory. All we have to do is to consider the quasi-Fermi energies of a junction in reverse bias. This is
schematically shown in the following picture:

The quasi-Fermi energies must behave in the way shown (the details do not matter), because otherwise the density
of charge carriers (especially minority carriers!) in the junction would be too high.
Note that in the dawing there are no minority carriers close to the SCR edges (deliberately!); only in those regions
away from the SCR, where there is a single Fermi energy (shown in red), minority carriers are depicted. There, the
standard full-equilibrium mass action law holds.

The decisive point is that we may consider any given thin slice of the SCR to be in local equilibrium, and that the quasi-
Fermi energy of the electrons is lower than that of the holes throughout the SCR.

The latter is a direct consequence of the applied reverse bias, increasing and steepening the potential barrier in the
SCR, in combination with the diffusion length of the minorities being larger than the width of the SCR (remember the
narrow junction approximation from above).
This ordering of the quasi-Fermi energies is the exact opposite of the situation that we have considered so far in the
recombination business, where we looked at an increased density of carriers, e.g. produced by irradiation with light.
Then recombination outweighs generation and UDL, the difference between recombination and generation, was
positive.
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Hence, in the case we are considering here, UDL is negative , i.e. there is more generation than recombination. And this
means that the space charge region is busily producing carriers, always in pairs because of neutrality, which will run
down the energy barrier producing an additional reverse current.

Pair production means that a deep level first emits a hole to the valence band, and then an electron to the
conduction band.
Let's look at this using the formula for UDL:

UDL  = 

v · σ · NDL · (ne · nh  –  ni2)

ne+  nh +  2ni · cosh
EDL – EMB

kT

For making estimates easier, we assume a mid-band level (i.e., cosh[(EDL – EMB)/(kT)] = 1 ) and ne, nh << ni .
This leaves us with

UDL  =  –  
v · σ · NDL · ni

2

For these assumptions we have seen that, treating holes and electrons on equal footing, 1/(v · σ · NDL ) = τ.

However, because we now have more generation than recombination, τ is now called the generation life time τG
for this case. (More to that topic in the link.)
This leaves us with a net generation of one kind of carrier of

|UDL|  =  G = 
ni

2τG

The current density from the net generation of carriers in the SCR is then given by the product of the net generation rate
with the width d of the SCR; adding up the holes and the electrons yields

jR(SCR)  = 
e · ni · d

τG

This is exactly the same formula (give or take a factor of 2) as in our "quick and dirty" estimate from before. The
physical reasoning wasn't so different either, if you think about it.

How about the contribution of the SCR to the forward current?

The proper treatment is much more complicated and physically different from our simple explanation. The physical
reasoning is as follows:
We have seen that we need to sustain a certain density of surplus minority carriers, ∆n e, hp, n, at the edges of the
SCR to maintain local equilibrium. The surplus carriers needed were injected from the other side of the junction and
crossed the junction without losses – at least in our present approximation.
In reality, however, some injected holes from the p-side will recombine with the injected electrons from the n-side.
Recombination in the SCR thus reduces the current needed to maintain ∆ ne, hp, n and an additional current has to
be produced which exactly compensates the losses.

The necessary calculations are shown in an advanced module, suffice it to state here that the final result for the forward
current from the SCR is (in a rather crude approximation)

jF (SCR)  = 
e · ni · d

2τG

· exp
e UD

2kT
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Again, besides the factor 2 (and the new kind of life time), the same formula as before. But this time it was a kind of
lucky coincidence, not really very well justified.
Or was it? Think about it!
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3. Silicon: General Properties and Technologies

3.1 General Properties

3.1.1 Conductivity, Lifetime and Lattice Defects

General Remarks

 This Module is unfinished
  

Silicon is by far the most common semiconductor used for all kinds of products; it accounts for more than 90% (my
estimate) of semiconductor products (measured in kg or $; whatever).

It is also by far the most perfect semiconductor in terms of crystalline perfection, the cheapest in its field of
applications if you consider value for money, and perhaps the best understood.
There are, however, plenty of questions concerning the properties of Si that are not well understood and thus there
is plenty of research opportunity and enough room for new uses of the good old Si.

Most of the basic properties of Si were already covered in the illustrations to the preceding chapter. Here only a short
summary will be given.

The intrinsic conductivity is governed by the band gap which determines the carrier density. The resistivity, in turn, is
given by carrier density times mobility. It should thus be possible to give precise values.

However, upon closer inspection it turns out that not only carrier mobilities are temperature dependent, but the band
gap, and the effective masses, too. That makes precise calculations difficult. We have, e.g.
Eg(300 K)=1,1242 eV
Eg(0 K)=1,1700 eV.
Measurements, while always possible, must allow for non-perfection - there is no such thing as an perfect intrinsic
semiconductor. With lots of precautions, it is possible to grow crystals with a resistivity (at room temperature) of
about 1 000 Ωcm - still far lower than the intrinsic value.

This should motivate a little exercise:

Exercise 3.1.1
What is perfection?

All in all, the precise temperature dependence of truly intrinsic Si is not so interesting anyway - because we never
encounter it.

What is interesting are some basic numerical values:

Bandgap (indirect) E g(300 K)=1,1242 eV

Effective density of states (conduction band) 3,22 · 1019 cm–3

Effective density of states (valence band) 1,83 · 1019 cm–3

Intrinsic carrier density ni (300K) 1,3 · 1010 cm–3

Intrinsic mobility of electrons (300K) ca. 1400 cm2/Vs

Intrinsic mobility of holes (300K) ca. 500 cm2/Vs

Lifetime (max). 1 ms ( für ≈ 100 Ωcm)

Density 2.33 g/cm–3 ≈ 5 · 1022 atoms/cm–3

Surface density
11.8
9.6
6.8





× 1014
atoms

cm2





on {111}
on {110}
on {100}
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Conductivity and Initial Doping
  

As stated above, it is not easy to produce Si with a conductivity close to the intrinsic limit.

Si wafers commercially available therefore have resistivities ρ ≤ 100 Ωcm (at room temperature); if you want
something better than that you have to negotiate with the supplier.
An example for what is on the market can be found in the link.

At the other end, large conductivities, obtained by heavy doping, are limited by the maximum solubility of the dopants.
The term "solubility" refers to the (temperature dependent) equilibrium concentration of impurity atoms that can be
incorporated into a crystal as single atoms.

For concentrations higher than the solubility limit, the surplus impurity atoms would tend to precipitate - and
precipitates of As, B, or P, while possibly introducing defect levels in the band gap, are not active as dopants.
The highest achievable meaningful doping levels are thus given by the highest solubility of a doping element (always
at a high temperature) - provided it can be kept in solid solution. This means that precipitation must be suppressed
because at room temperature the solubility is usually low.
The picture below shows solubility data for the common Si dopants. In all cases the solubility is rather large (with a
maximum between 1200 oC and 1400 oC), and may surpass the 1% level.

If the maximum concentration could be kept in solid solution while the crystal is grown, the resistivity could be lower
than what has been listed above. However, this is neither feasible nor sensible. Making devices always involves
some heating, and if dopants are present in a high supersaturation, precipitation may start during processing,
leading to all kinds of unwanted effects besides the unavoidable change in conductivity.

There is, however, no particular need for high doping levels and a high precision of doping. Making devices always
means that local doping is optimized -e.g. while making a source/drain area - and this requires medium to low doping
levels of the substrate which are easily achieved.

High doping is only important if the wafers are used as substrate for epitaxial layers, and then the exact doping level
is not crucially important.

The real importance of the solubility curves thus is in specifying how much doping can be achieved on top of the initial
doping by e.g. diffusion or ion-implantation. This will of course depend on the temperature!

Ion implantation done at room temperature thus always needs an annealing step to "activate" the dopants, i.e. to
dissolve them in the Si up to the solubility limit at the chosen temperature. At the same time, this high temperature
process also (hopefully) "anneals" the lattice defects produced by ion implantation.
There are limits to defect annealing, too: High doping levels change the average lattice constant - especially the
small B ion reduces this parameter. Heavily B-doped layers thus want to contract, and since this is not possible on
top of a solid substrate, mechanical stress is introduced which may lead to the formation of so-called "misfit
dislocations" - the link shows an example.

   

Lifetime and Diffusion Length
  

Silicon is an indirect semiconductor, we expect relatively large lifetimes and diffusion lengths.

This is indeed the case, lifetimes as large as 1 ms can be observed in extreme cases (This is an exceedingly long
time for an electron!)
The corresponding diffusion length approach mm; again a very large distance for an atomic particle.

Some numerical values linking lifetime and diffusion length for Silicon can be found via the link

Lifetime and diffusion length are direct measures of the cleanliness of Si with respect to "deep level" impurities which
act as life time killers as directly evident from the Shockley-Read-Hall theory.
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There are many ways to measure the life time. A particularly unconventional approach giving the most precise data
for the diffusion length is the "ELYMAT" technique, which is discussed in an advanced module.
The ELYMAT and other tools like it have been used extensively in the nineties to "clean up" Si production and
processing lines because even minute traces of contamination show up in a reduced diffusion length.

While it is generally important to maintain large diffusion lengths as a measure of cleanliness (and for some electronic
properties) in integrated circuits, it is particularly important for solar cells.

Any carrier generated by light that recombines in the bulk of the solar cell is lost for the external current that the
solar cell is supposed to produce. Diffusion lengths thus must be larger than the absorption depth for solar light,
otherwise the light generated carriers will not be able to diffuse to the the surface junction and produce current.
What this means in practical (rather relaxed) terms is shown in the graph:

For CMOS grade Si the requirements are much more stringent: Allowed levels of "life time killing" metals are much
lower and specified at < 5 · 1010 cm–3; i.e. at <1ppt (introducing now for the first time the ppqt - " parts per
quatrillion" range).
This is not so much because large lifetimes are so important, but because the metals killing the lifetime time tend
to precipitate - and even extremely low densities (say 1 precipitate /cm2) of extremely small precipitates (say 10
nm), if contained in a critical part of a device - e.g. at the Si - gate oxide interface - will kill a transistor and such the
whole device. An example is given in the link.

   

Lattice Defects
  

Lattice defects in microelectronic Si are easy to deal with: They are simply not allowed!

While it is indeed possible to avoid "larger" defects like grain boundaries, dislocations and sizeable precipitates in
Si crystals (cf. the relevant chapters of the "Electronic Materials" and "Defects in Crystals" Hyperscripts), there is
no way to avoid point defects or small agglomerates of point defects, also known as "BMD"s (bulk microdefects)
or "COP"s (crystal originated particles or pits), or LLS (sometimes also abbreviated LPDs): Localized Light
Scattering Defect.
Why? Simply because point defects (vacancies and self interstitials) will be present in thermal equilibrium during
crystal growth - and they cannot disappear at internal sinks like grain boundaries and dislocations because there
aren't any; and the surface as an external sink is simply too far away for all but the surface-near point defects. The
equilibrium point defects thus will be either "frozen-in" during cooling or form agglomerates which constitute the
BMDs.
Usually, these microdefects are few and small - it is not easy to detect them and often they are below the detection
limits of the most advanced methods. Historically, however, they are periodically rediscovered because devices are
becoming steadily smaller and more sensitive and their (always negative) influence on device properties is felt at
some point.

As a curiosity, it shall be noted in passing that point defect equilibria in Si are much more complicated than in other
elemental crystals and not very well understood up to this day.

In particular, Si seems to be the only elemental crystal so far where self-interstitials are present in thermal
equilibrium in concentrations that are comparable to vacancies (otherwise their concentration is always much
lower). This implies that both vacancies and self-interstitials are involved in the formation of BMDs and that the
diffusion of substitutional impurities (including all dopants) might be more complicated that usual.
Some more details can be found in the "Defects in Crystals" Hyperscript.
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3.1.2 Diffusion

General Remarks

If you are not very familiar with diffusion in general, it would be wise to consult some other Hyperscripts:

Basic diffusion in "Introduction to Materials Science I" (at present in German)

Point defects and diffusion in "Defects in Crystals"

The diffusion of dopants is of course one of the major topics in all process and device considerations. For any modern Si
technology you must be able to have exactly the right concentration of the right dopant at the right place - with
tolerances as small as 1% in critical cases.

And it is not good enough to assure the proper doping right after the doping process - what counts is only the
dopant distribution in the finished device.
Annoyingly, every time a high temperature process is executed after one of the doping steps, all dopants already
put in place will diffuse again, and this must be taken into consideration.
Even more annoying, the diffusion of the dopants may depend on the process - it may, e.g., be different if other
dopants are present.
A well-known example is the so-called emitter-dip or emitter-push effect which makes it difficult to achieve very
thin base regions in bipolar transistors. The effect is due to a changed diffusion coefficient of B in the presence of P.

The only way to master diffusion in making devices is an extensive simulation of the concentration profiles as a function
of all parameters involved - always in conjunction with feed-back from measurements. This requires a mathematical
framework that can be based on three qualitatively different approaches:

Use equations that describe typical solutions to diffusion problems and determine a sufficient number of free
parameters experimentally. Observed but poorly understood phenomena may simply be included by adding higher
order terms with properly adjusted parameters. This will always work for problems within a certain range of the
experimental parameters for which the fit has been made - but not necessarily for other regions in parameter space.
Solve macroscopic diffusion equations matched to the problem; i.e. equations of the type expressed in Ficks 1st
and 2nd law. The input are the diffusion coefficients together with the relevant boundary conditions. This works fine if
you know the the dependence of the diffusion coefficients on everything else (which you usually don't).
Base the math on the proper atomic mechanisms. If all mechanisms and interactions are fully known, they will
contain all informations and the results will be correct by necessity. Unfortunately, all mechanisms and interactions
are not fully known - neither in Si, nor in all the other semiconductors.

So none of theses approaches works satisfactorily by itself - what is needed is a combination.

In the eighties, e.g., it proved necessary to include diffusion mechanisms mediated by Si self-interstitials; a diffusion
mechanisms not observed in most other materials.
This would be not necessary for "simple" diffusion as expressed in Ficks laws with a constant diffusion coefficients -
regular vacancy or interstitial mechanisms are not distinguishable at this level.
Special effects, however, may occur and it is far easier to include these effects if the additional mathematical terms
reflect the atomic mechanisms - the alternative is to add correction terms with adjustable parameters.

In any case, diffusion in Si (and the other semiconductors) is complicated and an issue of much research and debate. It
has become extremely important to include all possible "classical" effects usually neglected because very high
precision is needed for very short diffusion times (or penetration depth), but the atomic mechanisms of diffusion in Si are
still not entirely clear.

In what follows a few basic facts and data will be given; in due time some advanced modules with more specific
items may follow.

Basic equations are the two phenomenological laws known as "Ficks laws" which connect the (vector) flux j of diffusion
particles to the driving force and describe the local change in particle density, ρ (x,y,z,t) and the Einstein-
Smoluchowski relations which connect Ficks laws with the atomic mechanisms of diffusion. Ficks first and second
law are
First law:

j  =  – D · ∇c

With c = concentration of the diffusing particles, D = diffusion constant and ∇ = Napla operator. We have
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∇ c  =  vector =   




∂c

∂x 
 ,

∂c

∂ y
 ,

∂ c

∂y





Second law:

∂c

∂ t
 = D · ∆c

With ∆ = Delta operator (= ∇2 ), and ∆c given by

∆ c  = 
∂ 2c

∂x2
 + 

∂2c

∂y2
 + 

∂2 c

∂ z2

An atomic view of diffusion considering the elementary jumps of diffusing atoms (or vacancies) over a distance a (closely
related to the lattice constant) yields not only a justification of Ficks laws, but the relations

D  = g · a2 · ν  
    

ν  = ν0 · exp –  
EM

kT

With g = geometry factor describing the symmetry of the situation, i.e. essentially the symmetry of the lattice, and
ν = jump frequency of the diffusion particle, EM = activation enthalpies of migration.

If the diffusion mechanisms involves intrinsic point defects as vacancies (V) or self-interstitials (i), their concentration is
given by

nV,i  = exp –  
EF

kT

With EF = formation enthalpy of the point defect under consideration.

The problem may get complicated if more than one atomic mechanism is involved. A relevant example for Si is the so-
called "kick-out" mechanism for extrinsic point defects (= impurities):

A foreign atom (most prominent is Au) diffuses rather fast as interstitial impurity, but on occasion "kicks out" a
lattice atom and then becomes substitutional and diffuses very slowly. However, the substitutional Au atom may
also be kicked out by Si interstitials and then diffuses fast again. An animation of this process can be seen in the
link.
The "kick-out" process is not adequately described by the simple version of the Fick equation given above.

Since even the simple Fick equations are notoriously difficult to solve even for simple cases, not to mention
complications by more involved atomic mechanisms, only the two most simple standard solutions shall be briefly
discussed.
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Diffusion from an Unlimited Surface Source
  

Consider the following situation:

On the surface of a Si crystal the concentration c0 of some dopant species is kept constant - e.g. by immersing the
Si in a suitable gas with constant pressure or by depositing a thick layer of the substance on the surface.
The dopant will then diffuse into the Si and since the source of dopant atoms is the surface, there will be a drop in
concentration of the dopant from the value c0 at the surface to zero deep in the crystal.
Independent of the dopant concentrations outside the Si, the maximum concentration in the Si next to surface
cannot be larger than the solubility of the dopant atom an the temperature considered; we take c0 than as solubility
limit.

The general one-dimensional solution of the differential equations of Ficks laws for this boundary condition of an
inexhaustible source then is given by

c(x,t)  =  c0 · erfc  
x

L

With L = 2(D · t)1/2 = diffusion length, and erfc(x) = complementary errorfunction = 1 – erf(x) and erf (z) =
errorfunction given by

erf (z)  = 
2

π1/2
  ·  

z
⌠
⌡
0

exp – a2 · da

The errorfunction can not be written in closed form; its values, however are tabulated. A typical solution of the
diffusion problem may look like this:

The interesting quantity is the diffusion length L which is a direct measure of how far the diffusion particles have
penetrated into the Si. At a distance L from the surface, the concentration of the dopant is about 1/2 c0 or, to be exact
0,4795 · c0.

This diffusion length for dopants or any other kind of atoms is not to be confused with the diffusion length of minority
carriers as introduced before. Of course, the physics is exactly the same - the diffusion length for electron and holes
as introduced before could just as well be obtained from solving the Fick equations for these particles.
Note in passing that while all definitions of diffusion lengths contain the (D · t)1/2 term, the factor 2 (or on occasion
21/2) may or may not be there, depending on the exact solution - but this is of little consequence for qualitative
discussions.

The total quantity of dopant atoms now in the Si expressed as a concentration ctotal can be obtained by integrating the
"diffusion profile", i.e. the curve of the concentration versus depth. This is analytically possible if the integration runs
from 0 to ∞ - a very good approximation for slowly diffusing atoms and thick wafers. The result is

ctotal  = 
L · c0

π1/2
 =  0,56 · L · c0
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The other standard solution for diffusion problems deals with the case of a finite source; i.e. only a limited amount of
diffusion particles is available.

This is the standard case for, e.g. ion implantation, where a precisely measured number of dopant atoms is
implanted into a surface near area.
For simplifying the math, we may assume that these dopants are all contained in one atomic layer - a delta function
type distribution at the surface.
This is of course not true for a real ion implantation, where there is some depth distribution of the concentration
below the implanted surface, but as long as the diffusion length obtained in this case is much larger than the
distribution width after implantation, this is a good approximation.

It is more convenient to resort from volume concentrations cof atoms to areal densities C because that is what an ion
implantation measures: the total number of P-, As- or B-atoms shot into the wafer per cm2 called the dose = atoms/
cm2. With C0 = implanted dose and C(x, t) the area density in the Si, the following solution is obtained:

C(x,t)  = 




C0

π ·D·t





1/2
 ·  exp –  

x2

4D t

This is simply one half of a Gaussian distribution (the "–" sign in front of x2 takes care of this) with a "half-width" of
(Dt)1/2; what it looks like is shown in the picture.

The curves can be characterized by a (Dt)1/2 product, which again gives a typical diffusion length.

The quantity of prime importance is always the diffusion coefficient of the diffusing particle. Only for "simple"
mechanisms it is a simple function of the prime parameters of the point defect involved as implicitly stated above.

D(T) then follows a simple Arrhenius kind of behavior; examples for the common dopants are shown in the figure:

The lines shown are perfect straight lines over more than 8 orders of magnitude - provided there are no
complications.

The example of an ion-implanted layer as the source for diffusion, however, provides a good example for some of the
complications that may be encountered in real Si diffusion:

First of all, if the distribution of implanted dopant atoms cannot be treated as a delta function, but must be taken
into account as it is. Solutions then can only be obtained numerically - with some effort.
Second, if only a small area has been implanted through a mask, at least a two-dimensional problem must be
solved - which is much more complicated.
Third, some dopant atoms will reach the surface after some random walk. The idealized solution assumes that they
will go back into the bulk, i.e. the surface does not act as sink for diffusion atoms. This is, however, not always true
and will lead to complications.
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Fourth, while all of the above still only amounts to a mathematical exercise in solving Ficks differential equations,
there are physical problems, too: Ion implantation produces lots of surplus vacancies and interstitials which will
become mobile during the diffusion procedure. The point defect concentration at the diffusion temperature thus is not
identical to the equilibrium concentration (at least for some time), and the diffusion coefficient which always reflects
the underlying atomic mechanism for equilibrium conditions, will be changed and become time dependent - a very
messy situation!

In fact, the usual goal after ion implantation is to keep the implanted profile in place as much as possible - no diffusion
would just be great. But you must get rid of the crystal lattice defects produced by the implantation and for that you
must anneal at elevated temperatures for some time - and diffusion will take place!

What is better: Long anneals at low temperatures or short anneals at high temperatures to remove the defects but
keep your dopants in place. Not an easy question; the answer must depend on the kinetics of the defect annealing
and the diffusion peculiarities of the atom under consideration.
However, the second case is usually preferred, and a whole industry has developed around this point under the
catch phrase "rapid thermal annealing or rapid thermal processing (RTA or RTP, respectively).

But there are more complications yet:

The diffusion of an atom may be changed if there are noticeable concentrations of other foreign atoms around - and
this includes the own species. P, as an example, diffuses faster in large concentrations and also enhances the
diffusivity of B (a key word is: "emitter push effect").
Some processes (notably thermal oxidation) produces non-equilibrium point defects (oxidation produces Si
interstitials) which will be felt by atoms diffusing via these point defects - their diffusivity will be different if the Si is
oxidized compared to an inert surface.
Some atoms, as already mentioned above, diffuse by more complicated mechanisms, e.g. the kick-out mechanism.
In a treatment with Ficks equations, this calls for two superimposed mechanisms, each with its own diffusion
constant and some boundary conditions to assure particle conservation etc.
A review from 1988 (which almost certainly will have been contested in the meantime in some points) covering just
fast diffusing elements in Si and discussing some of the complications mentioned above, is provided in the link.
Some prominent cases of deviations from simple diffusion behavior can be found in an advanced module

It should come as no surprise than that diffusion in Si, as far as the application to devices is concerned, is an active
area of research and development, and that no process engineer will ever believe the results of a simulation for diffusion
under a new set of conditions without experimental verification.

This leaves us with the question how diffusion profiles are measured - a large issue in its own right. We will deal with
this only cursory, by giving catch words. You must look it up yourself if you want to know more.

Sheet resistance measurements
This is the easiest method, but it only gives the average resistance of the doped layer (always assuming that it sits
on top of something pretty insulating).
Spreading resistance measurements
Here the resistance is measured as a function of depth by bevelling the sample. Cheap and easy in principle, but
error prone and tricky for shallow profiles (say for diffusion length smaller than a few µm).
Direct doping concentration measurements by SIMS
Very expensive and slow - but the ultimate method.
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3.1.3 Mechanical, Thermal, and Other Properties

Mechanical Properties

Silicon at room temperature is brittle - and that is about all there is to know.

Well not quite. First of all, fracture of Si is quite an interesting topic to many people (searching for "fracture+silicon"
produces about 20.000 hits in the Net)

Second, there is brittle, and there is very brittle. What is the case for Si? While the microelectronics industry has
learned not to break its wafers (that's the main reason why they are so thick), the crystalline Si (or Si-c) solar cell
industry cannot afford to waste Si and keeps its "multi-crystalline" (10 × 10)cm2 slices as thin as possible (about
300 µm). As a result, breakage of the slices is becoming the major problem in industrial solar cell production. At
present (2001) large research projects are started to find out more about fracture of (multicrystalline) Si.
Fracture toughness, to give some numbers, has been reported to be 1.19 MPa · m½ for the {100} tensile surface
and 1,05 MPa · m½ for the {111} tensile surface - there are certainly other numbers out there, too.
If we compare that to, e.g., the fracture toughness of Steel (≈ 200 MPa · m½), Nylon (≈ 3 MPa · m½), or ceramics
like Silicon nitride (Si3N4, Silicon carbide (SiC ) or Alumina (Al2O3) which are all ≈ (3 - 5) MPa · m½, or common
glass (≈ 0,8 MPa · m½), we see that Si is about as brittle as glass and "more" brittle than some of the tougher
ceramics.

Then we have the emerging "MEMS" industry, i.e Micro Electronic and Mechanical Systems. Obviously, the
mechanical properties, especially the elastic coefficients and the elastic moduli are of prime interest (besides fracture,
which simply must be avoided).

Youngs modulus, is given as 131 GPa (or 107 GPa, or ...; it depends on the source), which again should be
compared to that of diamond (1 000 GPa, the biggest there is), "hard" steels (≈ 200 GPa), ceramics (as above; ≈
400 GPa), Silver and gold (≈ 80 GPa), or Nylon (≈ 3 GPa).
All in all, Silicons elastic properties are pretty good, but not breathtaking.

But let's not forget that in most processes we heat up the Si to temperatures somewhere between 700 oC and 1200 oC,
and at high temperatures Si is no longer brittle but ductile, i.e. it deforms plastically.

Plastic deformation is always characterized by the yield stress τy which describes macroscopically the minimum
shear stress needed to induce plastic deformation, and microscopically the minimum stress needed to induce
dislocation movement.
In a somewhat simple minded approach, we see that Si is brittle and fractures if the yield stress τy is larger than
the stress needed for facture under the conditions used. Since the yield stress decreases with increasing
temperature, we expect that plastic deformation takes over at some temperature.
The figure below gives a compilation of τ y data for Si (from a paper by J. Rabier and J.L. Demenet; phys stat sol (b)
222, 63 (2000)).

In short, you must expect plastic deformation if the temperature is above, say 700 oC and you have some stress acting
on your Si.

If you started with a typical, completely dislocation free wafer, the initial τy might be somewhat larger because you
first must generate some dislocations (which then can multiply).
If some dislocations have been generated, however, its all over. You will experience plastic deformation and you will
have introduced dislocations irreversibly into your material.

Where do stresses come from? There are two major sources:

Semiconductors - Script - Page 95

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_3/illustr/i3_2_1.html


1. Running a batch of Si wafers (or slices, or whatever) into a piece of equipment that heats up the Si, the outside of
the wafer will always tend to be hotter than the inside during heating up, and vice verse during cooling down.
Thermal expansion will be different in different parts of the specimen, and that introduces stresses directly
proportional to the temperature gradient in the sample. There is nothing you can do except keep the temperature
gradients below the critical level. Typical tricks are to move into some oven s l o w l y , to have the equipment at
some lower temperature and then go up slowly after the Si is inside, or to do both.
2. If there are any layers on the Si (or inside, e.g. heavily doped regions), differences in thermal expansion
coefficients will generate stresses at sometimes very large levels. Again, while you cannot avoid the stress
produced by the layer you need, you can use some tricks to minimize the over-all stresses: Keep the area small
(provide holes in the layer where it is not needed); put the same kind of layer on the backside - the combined effects
cancel to some degree, and be generally aware of what you have on the backside (many layers are automatically
also deposited on the backside, and there are good and not so good times in a process sequence when you can
take them off).

If everything fails, you may want to try out some Si with a relatively high concentration of interstitial oxygen, Oi (say
around 20 ppm).

These impurity atoms make dislocation movement more difficult (and thus increase τ y ) without degrading
electronic properties too much (if you are lucky).

Last not least we note that the exact process of dislocation generation and movement, with particular respect to the
details of the dislocation fine structure, is of major interest to basic research, since ultra-perfect Si is an ideal proving
ground for theories concerning deformation and dislocations in covalently bonded crystals.

 

Thermal Properties
  

The most important thermal properties of Silicon are:

Thermal expansion coefficient αT,

Thermal conductivity k, and, to a lesser extent

Specific heat cp

The thermal expansion coefficient is crucial whenever other materials are in contact with Si, or if temperature gradients
are encountered. In both cases it is rather easy to destroy the device by building up large mechanical stresses leading
to fracture or plastic deformation. Lets see why

Si is in contact with other materials either during processing (when, e.g., a layer of SiO2 or Si3N4 or Al or ..., is
deposited, often on the front and backside, or, as a finished device, when it is encapsulated in some housing, i.e.
when it is packaged.

If temperature changes for a Si / other material compound - because you use your cellular phone during skiing and in
the summer, or because processing the wafer intrinsically needs high temperature - mechanical stress, being roughly
proportional to the difference in thermal expansion coefficients and the amount of material present, is simply
unavoidable.

The art of processing and packaging thus includes to keep the stress levels always below the critical stresses
required to induce plastic deformation or fracture. You may have to optimize the thermal expansion coefficient of
materials in contact with Si - if you can.
The black polymer compound, for example, that is universally used for cheap packaging, while still very different in
thermal expansion, is matched as much as possible. Since this is still not good enough, the Si chips are usually
ground down to a thickness far below the original wafer thickness.

As we have seen above. if there is a temperature gradient in a piece of pure Si (e.g. a wafer), the hotter parts want to
expand more then the cooler parts - again a mechanical stress is induced that is proportional to the temperature
gradient and the thermal expansion coefficient.

This is why you heat up the wafers   s l o w l y,  giving enough time for temperature equilibration. Otherwise, plastic
deformation will occur, ruining your chips and leaving a wafer that is no longer flat - wafer warpage, one of the
absolutely deadly wafer diseases, has occurred

Here are data of the linear (as opposed to "volume") thermal expansion of Si and some comparison to other relevant
materials
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After Okada and Tokumaru, 1984

At low temperatures, αT shows a pronounced minimum; an effect not easy to understand in cubic crystals, but
nevertheless observed in most of the other cubic semiconductors, too. If we take the room temperature value of
about 2,5 · 10–6 K–1, and compare it to the values of other materials important in Si technology, we have

Material Si Ge GaAs SiO2 Si3N4 Al Polymers

αT
[10–6 K–1] 2,5 5,8 6,86 0,5 3,2 24 ca. 50 ... 200

The thermal conductivity κ is important, because Si chips, like most semiconductor devices, are producing lots of heat
in operation. It must transported out of the system and the resistance to heat flow is given by the thermal conductivity of
the material.

What do we have? Here is the Si value, again together with thermal conductivities of other relevant materials. Note
that κ is strongly temperature and structure dependend. For Si3N4, as an example, values may scatter from 0,2 -
1,2 W·cm–1 · K–1 .

Material Si Ge GaAs SiO2 Si3N4 SiC Diamond Cu; Ag

κ [W · cm–1 · K–1]
at room temperature

1,5
1,4 0,6 0,46

0,54 ca. 0,014 ca. 0,2 ca. 3.5
(3 - 5) ca. 10 - 30 4

Diamond, surprisingly, is the champion - and that is why thin diamond layers are sometimes used to transport the
heat generated in some device to some heat sink as efficiently as possible.

While it appears that you just must live with whatever thermal conductivity a material has - this is not entirely true. The
thermal conductivity can be made substantially better, if the material is made from one isotope only!

Here is a recent (may 2002) topic form the news ticker in the semiconductor business.

Isonics Delivers Silicon-28 SOI Wafers
Online staff -- 5/2/2002
Electronic News

Isonics Corp. of Golden, Colo., today said that a major semiconductor manufacturer has taken delivery of Silicon-28
silicon-on-insulator (SOI) wafers for evaluation.
Isotopically purified silicon-28 has 60 percent more thermal conductivity than natural silicon, Isonics said. This
allows for reductions in the self heating of circuits made with natural SOI wafers. Incorporating Silicon-28 into SOI
wafers made using either oxygen implantation or layer transfer technologies requires no change in the
manufacturing processes developed for these wafers, the company said.
"While SOI wafers are known to reduce power requirements for devices, heat has been a large concern for certain
applications and is expected to become an even larger, more critical consideration as chip manufacturers continue
to push for more performance," said Stephen J. Burden, Isonics VP of semiconductor materials, in a statement.
"Semiconductor manufacturers, eager to design the optimum thermal/electrical solution for their specific device, are
becoming aware of the outstanding performance offered by the marriage of our high thermal conductivity silicon-28
and the film SOI wafer technology.
The wafers delivered to this customer were manufactured in cooperation with an existing thin-film SOI wafer supplier,
Isonics said, instead of the company’s thick-film SOI facility.

From "Semiconductor International 5-2002"
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The specific heat cp (of course for constant pressure) is not so important, but here are values anyway. In addition the
Debye temperature Θ is shown, too

Material Si Ge GaAs SiO2 Si3N4 Al

χπ [J/g · K]
at room temperature 0,7 0,31 0,35   0,9

Θ  [K] 645 374 362    

Other Properties
  

Here is a table found in the Net with some more non-electrical data

Some of the numbers deviate from the numbers given above; e.g. the thermal expansion coefficient.

That is just the way it is - if you look up anything, you will find different numbers. Often just a little bit different
(melting points, for example), but sometimes quite different (as in the thermal expansion coefficient here).
Reasons for this might be:
1. The quantities compared are actually different. In the table above, the linear thermal expansion coefficient is
given; in the table below it might be the expansion coefficient for the volume?
2. Watch out for units. Conversion can be tricky, especially for some quaint old British imperial units still much
beloved by the Americans, too.
3. The samples might have been different. Giving the "conductivity" or "lifetime" for Si without some comments,
obviously does not make much sense. How about other properties?
4. The number is simply wrong.

Si Properties

Refractive Index 3.4179 @ 10 µm ; 3,45

Reflective Loss 46.1 % @ 10 µm

Density 2,3291 g/cm3

Melting Point 1420 °C

Molecular Weight 28.086

Thermal Conductivity 1,63 W/(cm K); 1,4 W/(cm K)

Specific Heat 0,703 J/(g K) @ 25 °C

Thermal Expansion 4.05×10–6 / K @ 10...50 °C

Hardness (Knoop) 1150 (Mohs 7)

Young’s Modulus 131 GPa

Shear Modulus 79.9 GPa

Bulk Modulus 102 GPa

Rupture Modulus 340 MPa

Elastic Coefficient C11 = 167 / C12 = 65 / C44 = 80 GPa

Dielectric Constant 13 @ f = 9.37 GHz
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3.2 Silicon Production

3.2.1 Single Crystals and Wafers

This is an easy subchapter because the major points concerning single crystalline Silicon production for
microelectronics (and some other uses) - from making the raw (or metallurgical grade) Si, poly-Si for crystal growth,
single crystals, and wafers - have been covered in the Hyperscript "Electronic Materials" and here we provide just a link
to the starting chapter.

In what follows in the next subchapter, we will look briefly at methods to produce Si for applications other then
microelectronics - which means mostly solar cells.
Link to starting chapter

Here is an overview of what can be found in " Electronic Materials" with direct access to all modules.

What can you buy? Activating the link will tell.
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3.2.2 Silicon for Solar Cells

Personal "Historical" Remarks

Having worked in the development of solar Si from 1977 up to the present day, I remember a sizeable number of projects
that tried to make progress in the following areas:

Making "solar-grade" Si in cheaper ways than with the conventional process used for microelectronics Si.

Transform solar grade Si directly (no cutting) into suitable substrates for solar cells (square or hexagonal plates,
rectangles, or ribbons; typically about 0,5 mm - 0, 3 mm thick) at low costs - meaning minimal losses of the
starting material and simple processes.
Making solar cells out of the substrates at low costs - but with very good performance.

The ingenuity - not to mention the money - that went into solving these questions is nothing less but amazing. There
were (and still are) a large number (far more than anybody could have imagined) of approaches that have been tried - and
most have been abandoned by now!

While recalling all these "failures" is not exactly necessary in the context of this lecture, it would be highly
educational in a general context of alternative energy development. A quick scan of the readily available literature
(including some 1000 pages of the proceedings of the international conference on solar energy (Vienna, 1998) and 7
books) showed that many of the "old" approaches seem to be forgotten.
I will not make a concentrated effort to write the historical review that I could not find in the general literature in this
Hyperscript. Only a few general remarks, illustrated by some readily available examples (to me), will be given in the
backbone part. However, I might start some modules in the "advanced" section in which more historical stuff will be
collected in due time.

   

General Requirements for Si Solar Cells
  

A "solar cell primer" explaining briefly some of the more basic features of solar cells and solar energy, can be found in
the link.
When considering solar cells, all that counts in the end, is the prize for 1 kWhr electricity produced with the device.
While it is not particularly easy to come up with this number, it is of course directly related to the production costs of
solar cell modules (the assembly of solar cells in a frame) and thus to production costs of a single solar cell.

The costs of a module - typically (1-2) m2 in size - can be broken down into three main components:
35% for the solar Si material (ready for cell production)
30% for the solar cell technology (making a solar cell)
30% for module manufacture.
If one uses the conventional process to make single crystalline wafers as the starting material for solar cells, the
costs can be broken down as follows:
30% Starting material (poly-Si)
35% Crystal growth
30% Sawing the crystal into wafers (which also turns almost 1/2 of the expensive crystal into saw dust!)
5% for refining (etching, polishing, cleaning).
In other words: While 2/3 of the costs are directly caused by Si and Si technology, there is no overwhelming single
cost factor - you have to work from all angles to reduce costs.

How large is the market for Si solar cells?

In 1998 solar cells based on crystalline Si producing 130 MWp (the index "p" refers to "peak" power) electrical
power were sold, another 20 MWp or so was based on amorphous Si.
Considering that 1 m2 of a solar module - very roughly - produces about 100 Wp ; this translates into 1 300 000 m2/
a of solar Si, or - with an average thickness of 300 µm - into 390 m3 of Si, or - with a density of 2,33 g/cm3 - into
675 to/a of Si.
The world production of semiconductor grade "raw" Si is roughly 20 000 to/a (at very roughly $50/kg equalling 1 G$/
a; while the wafer business grosses something like 5 G$/a). Solar Si thus accounts for less than 5% of the eligible
Si production - small wonder that solar Si is usually taken from the "left over" of the microelectronic business. Use
this link for somewhat newer information about these topics.
More and newer numbers can be found in the link.

The growth rate of solar Si, however, is larger than the growth rate of Si for microelectronics. Sooner or later, the solar
Si community will have to make its own Si and this will be a major milestone in the history of Si production.
Let's now look at some of the major processes on the road from sand to solar modules:
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"Solar Grade" Starting Material
  

As mentioned above, starting materials for solar Si is usually recruited from "left over" of microelectronic Si (ME-Si)

Those "left over" might be wafers that were rejected, the seed- and end cones of the crystals, or parts of crystals
that did not meet specifications.
Some former ME-Si producers, no longer able to compete (i.e. Si producers form the former UDSSR), now sell their
products as "cheap" solar Si.
"Cheap" does not mean "dirty" or otherwise degraded with respect to the life time or diffusion length. A "good"
diffusion length L of the minority carriers (say at least a 100 µm) is absolutely mandatory. What this means in
terms of permissible impurities was shown before, here similar data are displayed directly for solar cell performance.

Efforts to produce dedicated solar Si directly, essentially can exploit three ways:

1. Take cheap metallurgical grade Si (MG-Si) and find a cheaper process than the standard process to convert it to
poly-Si. Many attempts have been made; but nothing seems to work so far.
2. Use the process for making MG-Si, but use sufficiently pure SiO2 and C, which will lead to relatively pure Si
directly usable as the starting material for making solar cells. The trick is to obtain the clean ingredients cheaply
(this could mean that you must make them yourself). Siemens AG spend quite some time (and money) exploring
this route. The approach worked, but not necessarily cheaply, and was abandoned about 1985.
3. Use a different reduction process for SiO2. The only competitor, it appears, is the aluminothermic reduction

3SiO2 + 2Al  ⇒ Al2O3 + 3Si

Since Al is an acceptor, the resulting Si can be expected to be strongly p-doped - not acceptable for ME-Si, but
fine for solar Si (which we want p-doped anyway).
While it is not directly obvious why this process should be better (mostly meaning cheaper) than the conventional
process, it has been developed by Bayer AG and is ready for production - but is not used at the present time (Nov.
2000).

Whichever way you produce your solar Si, next you must make thin sheets or slices (the name "wafer" is reserved for
the ME-Si product), possibly by first converting your solar Si to something bulky material, or by making "flatware"
directly. Typically you want a 10 cm x 10 cm x 0,03 cm slice of p-doped Si for the production of the individual solar
cells. This is probably the field where most new methods were developed as outlined below.
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Cutting Slices from Bulk Si
  

This is the main technology for making commercial Si solar cells. There is a bewildering multitude of processes, but all
belong to two basic classes:
Conventional" Technologies : Grow a (mostly single) crystal and slice it. This version accounts for (roughly) one half of
solar cells sold today (Nov 2000). Compared to ME-Si, money can be saved along the following lines:

Use less pure poly-Si and grow the crystal with relaxed specifications. Allow larger concentrations (and especially
concentration variations) of dopant, oxygen, some impurities and tolerate some dislocations.
This allows for higher growth rates - after all it is the amount of m2/min of solar cell material that defines the
productivity of your factory and thus determines how many (expensive) crystal pullers you must have.
Some special tricks include the growth of "tri"-crystals (three single crystals joined by defined grain boundaries, or
the growth of crystals with hexagonal cross section.
Slicing the crystals with inner-diameter diamonds saws - the conventional way for ME-Si - takes time and wastes a
lot of Si, but produces superior flatness which, however, is not needed for solar cells. Wire saws with many parallel
wires are used instead.
Polishing to a mirror finish - de rigeur for ME-Si - is abandoned in favor of a chemical etching procedure that simply
removes the layer damaged by the cutting.

Casting - followed by slicing; or casting directly into some kind of flat shape. The first version is now a standard
technique, it accounts for (roughly) the other halve of the Si solar cells sold today. If you think that casting Si seems to
be an obvious and easy way for cheap production - you are dead wrong: Casting Si, in contrast to practically all metals,
is very difficult because:

Si expands by almost 10 % upon solidification - almost everything else contracts. What happens then is known
from water (H2O) which is one of the few substances with the same "melting point anomaly" : Your water pipes and
hoses, if left with freezing water in the winter, will explode without fail - the pressure built up during solidification will
easily destroy almost any container. The only way left for casting is to make sure that you have a directional
solidification - the liquid Si must always be on top of the solidified one and never trapped inside something.
Si sticks to the walls of the mold because it is still under internal pressure (if it would contract like most other
materials, it would retract from the walls) and it reacts with almost anything. Getting it out of the mold (which you
would like to reuse) is not easy and calls for special materials and procedures.

Casting thin sheets in moulds therefore is practically impossible - what has been tried is:

"Spin casting", pioneered by the Hoxan Corp., Japan. Here a drop of molten Si falls on the center of a rapidly
spinning wheel so that the liquid Si is immediately pulled out to a thin sheet which then crystallizes. Solar cells of
good quality have been obtained; but it remains to be seen if the process makes it to large scale production.
"Band casting" by rapid quenching in analogy to the production method of amorphous metals. A constant stream
of a molten Si jet impinges on a rapidly turning cooled metal wheel. The Si solidifies rapidly and a thin continuous
band (at speeds of several m/s) is produced. The technique has been tried in a cooperation of Siemens and
"Vacuumschmelze Hanau", but the resulting Si bands were of poor quality and nothing came from it.

The method of choice then is casting big blocks of (necessarily) poly-crystalline Si, slice them with a wire saw, and
make solar cells as as best as you can - considering that the material contains grain boundaries and lots of other
defects which are generally detrimental to the performance of solar cells.

Several companies - most prominently "Bayer Solar", a company formed of the two formerly independent
producers Wacker Chemitronic and Bayer AG, but also several other companies, produce poly-crystalline solar Si
in this way which is often sold to other companies that produce the solar cells.
All possible problems notwithstanding - good solar cells with efficiencies of 12% - 14% are routinely manufactured
and this is not much worse than what one would get with single crystalline Si and standard processes. An example
is shown in the link.

  

Conversion to "Flat" Silicon
  

Cutting crystals of any kind into slices is wasteful and expensive - large scale efforts to convert solar grade Si to "flat"
Si in one fell swoop thus has been (and still is) a constant in the world of Si solar cells since about 1975. Usually "flat"
means some kind of long ribbon, but defined rectangles (or, as in the case of the melt spinning mentioned above), round
"wafers" were also considered.
Many different ways were explored - few are still with us, and only one (? I'm not quite sure about this) has made it to a
production status - the "EFG" process, see below.
A basic classification of the many ways is:

Technologies not using a substrate of some kind - producing "free standing" Si ribbons
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Technologies using a substrate of some kind - producing Si layers on some other material or free-standing Si after
separation from the substrate.

The first category contains tricky crystal growth methods like:

Dendritic web growth: A pretty much single crystal sheet is grown from the melt (not unlike the conventional CZ
procedure), except that growth is restricted to a thin sheet expanded between two somewhat thicker Si "dendrites" as
illustrated below.

This is something for experts in crystal growth techniques; it was tried, worked, and produced good solar cells - but
it was abandoned (too expensive).
Below a few schematic sketches of what is involved.

Ribbon growth directly from the melt by pulling out the crystal in an horizontal arrangement - sort of "over the rim".

The solidification interface is steeply inclined and thus rather large which makes it easier to remove the heat of
crystallization; high growth rates have been achieved.
However, this is a tricky process difficult to run stable for a long time. And if anything goes wrong, it is very time
consuming to start it again. In summary: Too expensive.
Variants have been tried, too; below three basic principles without any further comment.

The "EFG" method, i.e. the "Edge defined film-fed crystal growth technique". This is the one (and so far only (?))
method that made it to production scale. It was started by on offspring of Mobile (oil company) called Mobile Tyco, but
now is owned by ASE, a German based Company.

In essence, it is a modified CZ crystal growth technique. The crucible filled with liquid Si contains a (graphite) die or
nozzle and the crystal is pulled form a thin slot on top of the nozzle; well above the level of the liquid Si in the
crucible.
The Si used up in the crystallization is fed through capillary action to the surface of the nozzle. This looks
schematically like this:

 
Relatively long ribbons of good quality could be made after several years of
development.

The process was improved and became more economical by "bending" the die into a
closed form, for reasons not clear to me preferably into an nonagon. The nine-sided
tube is then cut along the edges and good quality material (almost, but not quite
single crystalline) is obtained (if good solar Si is used as feedstock). Presently
developments are under way to grow tubes with about 1m in diameter!
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The second category contained the following methods:

The "S-web" technique from Siemens AG (my first job at Siemens).

Here a net (mesh about 5 mm) from high-purity carbon fibres (not cheap) is led through a solar-Si melt. The idea
was that liquid Si is drawn out in the meshes of the net and stabilized by its high surface tension. It than can
crystallize at leisure - the sheet forming process and the crystallization process are essentially decoupled and the
removal of the heat of crystallization is no longer the limiting factor in "productivity" (= m2 of Si/min)
The basic principle is shown below; it can be used for a variety of substrates, not only for carbon nets, but also, e.g.
for carbon "paper" (tried by a french group in the eighties) or ceramic substrates.
 

Of course, everything can be combined. S-webs were pulled out of dies, or by
moving the net horizontally over the melt.

 
Well, the S-web technique did not work as originally envisioned - but it worked eventually! Long ribbons grown at
high speed (up to 1m/min) and up to 10 cm in width could be grown; the pictures show an example. The remains of
the net (it turns into SiC) on the backside are clearly visible on the right-hand side view.

Amazingly enough, the crystal quality was not as bad as it could have been - the net did not induce a lot of defects
like dislocations etc. - and solar cells with efficiencies > 10% have been made from S-web material.
But as ever so often - there was no real advantage in prize and the technology was abandoned around 1985. That
was also true for most of the other methods touched upon above, (and for several methods not even mentioned).

What do we learn from this? It is not so easy to make cheap solar cells from crystalline Si! Many billions of $ have been
spent on the effort, and untold master- and PhD theses were written. But much has been learned and the search goes
on - with different materials, but also new ideas for crystalline Si.
 

Specialities
  

A rapidly growing segment in the research part of solar energy are "Thin film Si solar cells"

Here a "thin" film (actually several µm to 15 µm thick, i.e. not "thin" in the usual meaning of micro electronic
technology) of poly-Si is deposited on a suitable substrate (e.g. some glass with a layer of ITO for the necessary
electrical contact), a pn-junction and a contact is added to obtain a solar cell.
Since the cell is too thin to absorb all radiation in the infrared, the surfaces (or interfaces) should be textured and
contain lots of microrprisms which reflect the radiation back into the Si.
This topic will be covered in more detail in the seminar

Several groups (Canon, Sony and a research institute of the University of Stuttgart) use Porous Si in conjunction with
Waferbonding to make solar cells.

(to be filled in later)

Not so obvious approaches were:
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Production of suitable Si plates by sintering fine Si powder - akin to the standard process for making ceramics.
This was a process pursued by Siemens in the early eighties and then carried over to a research Institute in
Freiburg/Germany. While it works, it does not seem to offer clear advantages and was abandoned
Produce spherical solar cells by making small spheres (in the mm range) of Si that contain a pn-junction on the
outside (let drops of liquid Si fall down a tower (in vacuum of course) and add some dopant gases near the bottom).
Then fuse the little spheres to flexible sheets, provide contacts (tricky!) - and you have a big solar cell, a whole
module, in fact.
This process was pioneered by Texas Instruments (to some extent, it appears, because it was the brain child of
Jack Kilby, the famous co- inventor of the integrated circuit who just (2000) got the Nobel prize (the other inventor
was Robert Noyce from Fairchild (which spawned Intel among many other companies)). While highly advertized in
the late eighties and early nineties, it was recently sold to "Ontario Power" (where I lost its trace).

Semiconductors - Script - Page 105



3.2.3 Crystal Lattice Defects in Si

 
Strangely enough, while single crystalline Si as used in the micro electronics industry is the most perfect material in
existence (at least on this side of Pluto), investigations of the possible lattice defects (point defects, dislocations, grain
boundaries and so on) fill many volumes of scientific literature.

For the time being, however, we will not delve into this subject here in any great depth but refer to some links

Point defects in Si are of prime importance for three independent reasons:

They are the vehicles for the all-important diffusion processes of dopants and other foreign atoms. Since there is a
definite (and very unusual) contribution from self-interstitial present in thermal equilibrium, diffusion in Si is much
more complicated than in other elemental semiconductors and still an object of study.
They are unavoidable defects because they are present in thermal equilibrium. This puts limits to the perfection of Si
single crystals, and the microdefects introduced during crystal growth by agglomeration of point defects are a major
object of investigation. The link leads to a recent article reviewing this part of defects in Si
Last not least: As long as we do not really understand point defects in Si - and we still don't - there is a need for
basic research for basic research sake. After all, Si is not such a complicated crystal and if do not know everything
there is to know about its thermal equilibrium defects, there is little hope to understand this in more complicated
materials.

"Larger" defects, i.e. dislocations, grain boundaries and precipitates, are also objects of intense investigations for
the following reasons:

They are present in poly-Si that is used for, e.g., solar cells, and they will influence the technology and the device
properties. It was (and still is) a major question if these defects are "electronically active" (meaning that they act as
recombination centers), and what determines the level of those activities.
They may be formed during the processing of Si - mostly inadvertently with deadly effects, but sometimes
intentionally (for the so-called "intrinsic gettering"). More about this subject in the link (and in the links going out
from there).
They are studied in basic research to learn more about defects in covalently bonded crystals - the precise atomic
structure of grain boundaries, e.g., is far from being completely understood.
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3.3 General Device and Product Considerations

3.3.1 Interfaces and Contacts

 This Module is unfinished
 General Remarks

Practically all Si devices and all other solid state devices have properties that are "interface controlled".

The "pn-junction" is an interface and so is the MOS contact. The latter, in fact, involves two interfaces: Si-oxide and
oxide-metal. But there are many more interfaces: Metal-Si contacts are needed to connect the device to the outside
world and there are many interfaces between the various layers in integrated circuits.
What kind of interface properties do we want to have? This is not a simple question: In the case of the pn-junction
we certainly want the "metallurgical junction" (the area of actual contact between the p and n-type Si) to have no
structural properties - it should be impossible to find it analytically as far as the Si is concerned. Of course, the
metallurgical junction of a a pn-junction formed by diffusion is not really definable; but you also could make a pn-
junction by epitaxy and then the metallurgical junction is wherever the surface of the substrate was.
On the other hand, it would not be too far fetched to assign all the electronic properties of a pn-junction to the
interface (one certainly would do this for a metal-metal junction).

Usually we would like a metal - Si contact to be ohmic - and not of the Schottky type. This again might be seen as an
interface property. For both electronic properties mentioned we would like them to be as independent from structural
properties as possible. In other words, the precise arrangement of the atoms in the interface, the presence of interface
dislocations, etc., should not matter much.
Then we have structures where we hope that the interface does not have any properties relevant to the device function.

Interfaces for a MOS contact, e.g., are not really required for the function - theoretically we could remove the
dielectric and run the device in vacuum with somewhat changed parameters because of the changed dielectric
constant. The question now is if there are interface properties that interfere with the device operation.
We certainly would tend not to worry about the properties between some insulating dielectric layers or call for "no"
properties - but that is not correct, we definitely want that the stick together solidly, or, in other words, we want
some bonding or adhesion.

We thus must ask ourselves: What are the properties an interface can have and how do those properties influence or
even enable device operation.

What are the basic properties an interface can have?

What is the variation range of a given property and how can it be influenced or tuned to specific needs?

How do specific properties interact? For example, how does the atomic structure correlate to electronic properties,
e.g. states in the band gap?

Looking at interfaces in this kind of generality, we are opening a rather big can of worms. However, we will stay short of
the more structural considerations and focus on just a few examples with some importance to semiconductor devices.
 

Properties of Interfaces
  

First, we restrict ourselves to properties that are directly linked to the interface; i.e. that stem from whatever the interface
introduces locally. Interface states in the band gap are an interface property in this sense, but not the space charge
region of a pn-junction, or the junction properties themselves.

In principle, all these properties are then given by the exact structure of the interface, i.e. the exact location of all
atoms and their interaction with their neighbors, i.e. the bonding situation.
We may distinguish between intrinsic and extrinsic properties. Intrinsic properties result from an interface between
two "ideal" materials that do not contain unwanted impurities - in other words we look at a "perfect" interface. Note
that perfect interfaces may still contain lattice defects, e.g. so-called grain boundary dislocations, as an intrinsic
part of their structure.
Extrinsic properties result from the incorporation of impurity atoms, precipitates and other structural defects not
present in the intrinsic case.

Looking at an (incomplete) list of interface properties, what comes to mind are the following topics:

Interface energy. A few numbers give an idea of the magnitudes encountered:

Coherent twin boundary in Si (smallest interface energy for Si grain boundaries): ≈ 60 mJ/m2

General grain boundary in Si: ≈ 600 mJ/m2

Silicon - SiO2 interface ???
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Interface "Strength": How much energy (or mechanical stress) is needed to rip the two materials apart? Looking
at the many interfaces of a typical integrated circuit this does not appear to be a problem - the whole thing sticks
together pretty well, However, this is more a lucky accident. If you try to to replace the intermetal dielectrics
(usually some variant of SiO2) with some kind of CF4 (Teflon in other words), you will have big problems because it
does not "stick". And you would dearly love to use Teflon for modern high speed devices because it is one of the few
eligible materials with a very low dielectric constant. Of course, interface strength is related to the interface energy.
Interface structure: There are several layers of complexity when considering the interface structure:

First, you may have to ask yourself if you really have a "simple" A-B-interface. On a more macroscopic (but
intrinsic) level you may wonder if there is an intermediate layer - e.g. a thin amorphous layer of some Si - Ni
mixture between a Si - NiSi2 interface, to give an example (there isn't, by the way), or if there is an abrupt
crystalline - amorphous transition at the Si - SiO2 interface or gradual loss of crystallinity in the SiO2
interface (it's rather abrupt), or if there are any preferred crystallographic orientations for interfaces between
crystals (there usually are), and so on
For crystalline - crystalline interfaces you may ask next, if there are any intrinsic structural units, e.g.
networks of dislocations (e.g. grain boundary dislocations or misfit dislocations).
Yet a level down, the question will be how an interface deals with intrinsic lattice defects, e.g. dislocations
impinging on it, steps in the interface plane or changes in the plane of the interface (the interface may be
bent, after all)
Finally, you have to consider the influence of extrinsic components. Point defects might segregate at the
interface and even form precipitates, or small highly mobile atoms (usually H) may become stuck at the
interface (bonding to "dangling " bonds, i.e. bonds that are nit saturated.

.
Interface "chemistry": Interfaces are often more reactive in a general sense of the word than the bulk material.
Corrosion, in particular, may not only proceed along interfaces much more rapidly than in the bulk; it may be
caused by the "galvanic" properties of the interface, Somewhat more general, diffusion of atoms or molecules might
be quite different in interfaces than in the bulk.
Interface charge: Interfaces might be charged for a variety of reason, and this brings us closer to the more
interesting properties for semiconductor devices:

It is almost impossible to balance charges exactly in interfaces between ionic crystals or materials with
some ionic binding component. The interface then carries a net charge that is balanced either by other parts
of the interface, by charged point defects, or by other interfaces. The charge is felt for a distance of about a
Debye length; in all conducting media it is therefore hardly noticeable. This is an essentially intrinsic charge.
If the interface has some energy states in a bandgap, these states may or may not be occupied by
electrons, depending on the Fermi energy of the system. The interface therefore may carry some variable
amount of charge. Again, this is essentially an intrinsic charge.
If some extrinsic ions are solidly trapped in the interface - e.g. alkali metals and alkaline earth metals like
Na, K, Ca, etc. in the Si - SiO2 interface - there will be some charge in the interface too. This then is an
extrinsic charge

Some devices, e.g. EPROMs, rely on interface charge - and on the fact that it may stay there for very long times!
Interfaces states - for electrons or holes. While the density of states is always affected by interfaces, they must
not necessarily introduce energy levels in the band gap; i.e. only the density of states in the valence and conduction
band may be affected.
 

Reactive and Non-Reactive Interfaces
  

Whenever we make an interface between materials A and B by depositing B somehow on A, the formation of the final
structure with all its properties will occur between two extreme cases

For a non-reacting interface, the B-atoms just stay pretty much wherever the are deposited.

For a reactive interface, interdiffusion takes place, forming some A-B mixture or even defined compounds Ax By.

Non-reactive interfaces usually become reactive to some extent upon heating.

  
 Topics to be covered

Si-SiO2 Interface, Si - metal, silicides
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3.3.2 Scaling Laws

General Consideration of Making Devices Smaller

All theories introduced so far (i.e. all of chapter 2), always assumed "infinite" or "semi-infinite" crystals. For example,
the size of the crystals did not matter for the characteristics of a pn-junction; the dimensions of the n- and p-doped
regions did not enter the equations.

However, if we reconsider for a moment the simple derivation of the I-U-characteristics of a pn-junction, we
(hopefully) remember that the carriers responsible for the reverse current originated from a region defined by the
diffusion length of the minority carriers.
What happens if the device is much smaller than the diffusion length L ? This will be almost always the case,
considering that L is around 100 µm and typical integrated transistor occupy hardly 1 µm2?

While this question can still be answered relatively easily by conventional device physics, it nicely illustrates that we
can not expect the properties of any device to be independent of its size as suggested by simple semiconductor
physics.

The basic question in micro-technology thus is: What happens if you make an existing (and functioning) device
smaller?
And making something smaller can be done in different ways: You may simply decrease the lateral extensions
while leaving the depth dimension unchanged, or more realistically, you scale the lateral and depth dimensions by
different factors. As an example, while you may reduce the lateral size of a source-drain region by a factor of 2, the
depth of the pn-junctions and the thickness of the gate oxide may scale with only a factor of 1,3.
How do you find the optimum? Where are limits and how can they be overcome? In other words: What are the
relevant scaling laws and when do we hit a brickwall - you can't make it smaller any more without insurmountable
problems!

There are some billion Dollar questions hidden in this scenario, and there are no easy answers for some of the details.
There are also, however, some simple laws and rules which we will consider briefly in this subchapter.

  

Linear Scaling and Problems
  

Lets look at some general scaling laws. We simply assume that we decrease all linear dimensions of an existing
device by the scaling factor K.

A first obvious conclusion is that the field strength in some insulating layer, e.g. a gate oxide, increases K -fold. We
may accept that, or we might scale the voltage, too. In this case we would decrease UDD, the external driving
voltage, to UDD/K.
Going through all important parameters (with some approximations if necessary), we obtain the following table

Property Scaling

All lateral and vertical dimensions 1/K

Doping concentration K

UDD ⇒ UDD/K UDD = constant

Packing density (No. transistor/cm2) K2 K 2

Current densities K K3

Field strenghts 1 K

Power loss density 1 K3

Power loss per transistor 1/K2 K

Time delay per transistor 1/K 1/K2

Semiconductors - Script - Page 109

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_3/advanced/t3_4_1.html


The problems you are running into are obvious. Lets look at the transition from a 1 µm process to a 0,25 µm process,
i.e. K = 4

Without a fourfold reduction in the supply voltage, we would have a 64 fold increase in current densities and power
loss, and a 4 fold increase in field strength. This is not going to work
Decreasing U DD fourfold (from 5 V to 1,25 V) still increases the current density fourfold, but keeps all other
parameters manageable. However, our device only speeds up 4 fold, compared to 16 fold for constant. UDD.

So simply lets scale down UDD some more? Well, yes - but: You can't just decrease all dimensions and UDD just so!

The tjickness of gate and capacitor dielectrics might be close to absolute limits (e.g. imposed by tunneling) and
simply cannot be scaled down much more.
Internal voltages might only be fractions of the supply voltage and reducing UDD may decrease signal to noise levels
to unacceptable values.
Voltage swings for switching transistor must at least be in the order of the band gap, i.e. 1 V for Si. Voltages thus
cannot be reduced to arbitrarily small levels.

If we look at the actual scaling of devices, much ingenuity and many additional process steps were used to avoid the
simple rules of scaling. Here are a few examples:

Trench capacitor instead of planar capacitor. The thickness of the dielectric thus could stay relatively constant,
which allowed higher supply voltages than required by scaling.
Electromigration resistant metallization (addition of Cu or other atoms to the Al lines, multi layers etc.) allowed
larger current densities
"Lightly doped drain", i.e. complicated dopant profiles of the source/drain region below the gate allowed higher field
strengths in the MOS transistors.

The list is easily extended by 10 or more points; but you get the drift.

But all tricks notwithstanding: the supply voltage had to come down. The historical development is shown in the
figure below.

There are several remarkable features:

For almost 10 years the supply voltage was kept constant at UDD = 5 V despite a scaling of K = 5. This was
possible by a dramatic increase of process complexity and materials engineering.
The end in scaling UDD is near. Now (2001), supply voltages are as low as 1, 5 V, and we simply cannot go much
below 1 V with Si.
New principles are needed, because we still can make functioning transistors far below 0,1 µm. One possible
solution is to make vertical transistors. Demonstrators (Bell Labs) work with gate length of 30 nm or less.

What happens: You will not only live to see it, but possibly help to establish it.
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Fundamental Limits
  

Whatever clever tricks are used to make just one more step towards smaller devices, there are some ultimate limits.
One simple example shall be given; it concerns doping:

Lets say we need doped areas with a typical dopant concentrations of ρ = 1016 cm–3 or 1018 cm–3 and maximum
deviations of ± 10%. This implies that the doped area must contain at least 100 dopant atoms because the
statistical fluctuations are then (100)1/2 = 10 giving the 10% allowed.
100 atoms at the prescribed density need a volume of (100/1016) cm3 or (100/1018) cm3 , respectively, which
equals 107 nm3 or 105 nm3, respectively.
These volumes correspond to cubes with a linear dimension of 215 nm or 46,4 nm, respectively. What does this
mean?

Look at it in a different way: A typical source/drain region in a modern integrated circuit may be 0,5 µm x 0,5µm x 0,2
µm = 5 · 10–2 µm3 = 5 · 107 nm3.

At a doping level of 1016 cm3 - corresponding to the perfectly reasonable resistivity of 1.4 Ωcm (p-type) or 0.5 Ωcm
(n-type) - we have about 500 doping atoms in there! Doping to a precision better than (500)1/2 = 22,4 or 4,47 % is
principially not possible assuming a statistical distribution of the doping atoms.
Decreasing the size to e.g. 0,1 µm x 0,1µm x 0,02 µm = 2 · 105 nm3 leaves us 2 doping atoms in there - obviously
absurd. Again we have to turn to novel structure - vertical transistors may do the trick once more.

There are more "fundamental limits" - just how fundamental they are, is a matter of present day research (and a seminar
topic).
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3.4 Basic Silicon Devices

In this subchapter 3.4 we look at typical Si devices from two angles:

First, the very basics of more or less ideal devices are given in rather short notation. This should be a reminder and
not something new for you.
Second, some relevant facts about real devices are presented without much deduction.

Some of this will be needed and come up again in chapter 8 "Speed".

3.4.1 Junction Diodes

The Ideal Junction Diode

The ideal - in the sense of most simple - Si junction diode has essentially one major property:

Its I-U characteristic can be described to a very good approximations by the "simple" pn- junction theory containing
the contribution of the space charge layer (otherwise you are not really describing a Si device at all). We had

j  = 




e· L· ni 2

τ  · NA

+
e· L· ni 2

τ  · ND





·




exp –
eU

kT
  – 1





+ 
e · ni · d(U )

τ


 exp –

eU

2kT
  – 1 



The major variables are the doping levels N (determining the SCR width d,too), the diffusion length L, (same thing
as the life time τ, since they are coupled by the Si diffusion constant D, which again is directly connected to the
mobility µ of the carriers, which finally is mainly a function of doping), the temperature T, and, of course, the junction
voltage U.

When does this equation break down, i.e. what distinguishes an "ideal " junction diode from a "real " one?

First, with just that equation, you could increase the voltage to any value you like, and the equation gives some current
which might become very large for forward bias, and would stay small for arbitrarily large reverse bias. That is not
realistic, of course.

At large reverse voltages, we have a large electric field in the SCR, and at some point we will just have electrical
breakdown since no material can withstand arbitrarily large field strengths. The breakdown mechanism is usually
avalanche breakdown.
Very large forward currents are also not realistic. The real I-U characteristics shown before indicates some reasons.
One thing that goes wrong is that our equation does not treat the case of high injection, meaning that the
concentration of minority carriers injected into the junction is larger (or at least comparable) to the equilibrium
concentration in the bulk. Somewhere in the derivation of the basic diode equation we always made an assumption
(hidden or openly) of low injection, so we cannot expect real diodes to behave ideally for large forward currents.

Second, we have totally neglected the ohmic resistance of the Si.

Whatever its value Rser might be, it can be seen as being switched in series to the actual diode and thus will
reduce the junction voltage Ujunct to

Ujunct  = Uex  –  I · Rser

In other words, we now must distinguish between the external or terminal voltage Uex and the junction voltage
Ujunct, and there simply is no way to pass currents larger than Uex/Rser.

Third, we certainly must have some reservations about the doping in the derivation of the equations, too.

The concentration N certainly cannot have any value. But limits here are not very important, because for the level of
doping achievable in real Si diode, the equation is not too bad.
More important are gradients in the dopant concentration, i.e. dNAcc/d x because we assumed (implicitly) that N is
constant; which it rarely is in real diodes.

Fourth, we have to be a bit concerned about the temperature.

The validity of the equation with respect to T-variations is limited: Somewhere we assumed that all dopants are
ionized and that the Fermi energy is close to the band edges which will certainly not be true at any temperature..
In practical terms this means that we are restricted to temperatures not too far off room temperature.

Fifth and last, we have to consider the diffusion length L.
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While we might worry a bit about the allowable range - is the equation still correct for very large or very small L - the
real problem is different:
Make an ideal diode from Si with L = 200 µm, for example (a regular value), and then make the diode small - lets
say you just leave 1 µm of Si to the left and right of the SCR. Since L was the average distance an electron or hole
traveled in the Si before death by recombination, we have a problem now. The bulk value of L obviously can no
longer summarily describe the perambulation of a minority carrier.
Looking at it more quantitatively, we must modify the distribution of minority carriers from the edge of the SCR into
the bulk of the Si for forward current flow as it was dealt with in subchapter 2.3.4 "Useful Relations" and in
subchapter 2.3.5 "Junction Reconsidered". Lets look at this in an advanced module, here we only look at the
results.
 

The Real Junction Diode.
  

Lets see summarily what we must change to account for the items 1 - 5 above.

First we look at intrinsic voltage and current limitations .

Avalanche breakdown will occur whenever the field strength in the SCR manages to impart enough energy to an
electron or hole to generate more carriers in some scattering process. While it is clear that the he field strength in
the SCR is mainly a function of doping, it is not so easy to derive numbers.
There are more breakdown mechanisms than just carrier multiplication by avalanche effects; most important,
perhaps is tunneling of carriers through the potential barrier at the junction. Again, high field strengths help.
Important are the practical limitations in terms of usable reverse voltages (not field strengths per se). The range of
admissible reverse voltages is large and reaches from > 1000 V for lightly doped Si, say 1014 cm–3 (and some
sophisticated technology) to just a few Volts on the highly doped end - take 1018 cm–3.
Forward currents in the high injection mode of a real diode will be smaller than predicted by the ideal equation. In a
first approximation, we simply have to reduce the slope of the characteristic by a factor of 2 - we have the same
slope as in the SCR dominated part at very small forward currents.
This is what is shown in the curve for a real diode in the picture we used before.

Second, how about the ohmic resistance?

It is certainly not negligible in many real diodes and is one of the major problems in solar cells.

It is, however, easy to address. Just do it yourself in a little exercise.

Exercise 3.4.1
Current-Voltage characteristics of a

solar cell with series and shunt
resistance

Third, we consider doping gradients.

This is certainly the realistic case, because real diodes are mostly made by diffusing n or p-dopant into a p or n-
doped substrate, respectively. At least one side of the diode thus has a doping that varies strongly with the distance
from the actual junction (located at the point where ne = np or NDon = NDAcc . Typical profiles are given in the link
How do doping gradients influence the current-voltage characteristics?

The surprising answer is: Not much at all! (Take that with a grain of salt)

The reason is that no matter how you derive the I(U) characteristics, the decisive parts are only the height of energy
barriers, and the recombination/generation/diffusion behavior outside the space charge region. The precise shape of
the band bending, or the width of the SCR does not enter at all, or at best weakly (in the SCR term via d SCR) in the
basic equation from above.

What will be influenced by doping gradients are: First, (minor) parameters like resistivity and mobility, and second, the
SCR properties like its size, and especially its capacitance.

The first group changes the pre-exponential factor L · ni 2/τ · Ndop somewhat; essentially you replace the formerly
constant Ndop by some kind of average resulting in an effective doping Neff.
These second set of parameters resulted from solving the Poisson equation, and we have only done this for
constant dopant concentration. Redoing the calculations for real dopant profiles must generally be done numerically.

However, the minor effects of doping gradients on the DC (direct current) current-voltage behavior must not induce you to
think that doping gradients are unimportant!

The AC behavior, or, in other words, the speed of the junction, is very much influenced by SCR properties and thus
by dopant gradients.
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More to that in chapter 8 "Speed".

Fourth, a quick glance at temperature effects

Typical T-specifications for Si devices are 0 oC < T < 70 oC for typical consumer integrated circuits or – 55 oC < T
< + 125 oC for somewhat better stuff.
Pushing technology and materials gives maybe + 160 oC for an admissible operation temperature of Si devices.

While it is not only the pn-junction that limits the temperature region for applications of more complex devices, you
simply must make sure that you have sufficient carriers (i.e. T cannot be too low), but not too many (i.e. carrier
concentration must be controlled by doping and not by thermal band-band generation), limiting the upper temperature.
Fifth and last, how does the size of the device influence its properties?

There is simple answer for simple (one-dimensional) small diodes: Replace the diffusion length L by a relevant
length of the device, e.g. the distance between the edge of the SCR to the ohmic contact dCon in all equations, and
concomitantly the life time τ by the transit time ttrandefined via

dCon  = D · ttran



1/2

The justification is given in an advanced module.

In other words, we equate some relevant length dCon of the device with the average distance that minority carriers
travel before they disappear, and ttran is the time they move around.

This makes not only immediate sense but has far-reaching consequences, as we will see, e.g. in chapter 8. Some
major points are listed below:

The size (together with the mobility) becomes the most important parameter for speed .

Since vertical dimensions are more easily made small than lateral ones, bipolar devices in a vertical stack are
inherently faster than lateral MOS devices. In-diffusion of dopants, e.g., defining the depth of a pn-junction, is easily
restricted to 0,1 µm; while it takes very advanced technology to produce lateral structure sizes in this region.
Leakage currents decrease with decreasing device size.

One (of several) incentives to make devices ever smaller has its roots right here.

Well, the long and short of this is that real diodes are quite different from ideal ones - in the details! The global topics
stay unchanged, lets recount them quickly:

Majority and minority carrier dynamic equilibrium in the bulk, controlled by doping, carrier life time and
mobility
Energy barrier at the junction, resulting in SCR and carrier concentration gradients
Very different behavior in reverse and forward direction
Forward currents mostly resulting from diffusion currents removing injected minorities
Reverse currents mostly resulting from field currents affecting minorities at the edge of the SCR

In practice, "ideal large" diodes practically do not exist (except in the form of solar cells). Even "small" diodes with
graded junctions and the like are not really used if you need a diode (but as part of more complicated devices like MOS
transistors). Technical diodes are more sophisticated since they are optimized for specific parameters, e.g. extremely
large breakdown voltages. A few examples are

The PIN diode, short for: p-doped - intrinsic - n-doped. A thin layer, as intrinsic as possible, is sandwiched
between doped Si. Good for large forward currents and large reverse voltages. This is the standard form for diodes
use for rectifying purposes.
Tunnel diodes, varactors , fast recovery diodes, Gunn diodes, IMPATT diodes, Zener diodes, solar cells - there
is no shortage of names for special diodes and applications going with it. We will, however, not dwell on the subject
her (in time, maybe, there might be advanced modules).
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3.4.2 Bipolar Transistors

Basic Concept and Operation

We are not particularly interested in bipolar transistors and therefore will treat them only cursory.

Essentially, we have two junctions diodes switched in series (sharing one doped piece of Si), i.e. a npn or a pnp
configuration, with the added condition that the middle piece (the base) is very thin. "Very thin" means that the base
width d base is much smaller than the diffusion length L.

The other two doped regions are called the emitter and the collector.

For transistor operation, we switch the emitter - base (EB) diode in forward direction, and the base - collector (BC)
diode in reverse direction as shown below.
This will give us a large forward current and a small reverse current - which we will simply neglect at present - in the
EB diode, exactly as described for diodes . What happens in the BC diode is more complicated and constitutes the
principle of the transistor.
In other words, in a pnp transistor, we are injecting a lot of holes into the base from the emitter side and a lot of
electrons into the emitter from the base side; and vice versa in a npn- transistor. Lets look at the two EB current
components more closely transistor:

For the hole forward current, we have in the simplest approximation (ideal diode, no reverse current; no SCR
contribution):

jhole(U)  = 
e · L · ni2

τ · NAcc

 · exp – 
e · U

kT

and the relevant quantities refer to the hole properties in the n - doped base and the doping level NAcc in the p -
doped emitter. For the electron forward current we have accordingly:

jelectron(U)  = 
e · L · ni2

τ · NDon

 · exp – 
e · U

kT

and the relevant quantities refer to the electron properties in the p - doped emitter and the doping level NDon in the n
- doped base.
The relation between these currents, i.e. jhole/jelectron, which we call the injection ratio κ, then is given by

κ  = 

   
Lh

τh · NAc

   

   
Le

τe ·NDon

   

 = 
NAc

NDon

Always assuming that electrons and holes have identical lifetimes and diffusion lengths.

The injection ratio κ is a prime quantity. We will encounter it again when we discuss for optoelectronic devices!

For only one diode, that would be all. But we have a second diode right after the first one. The holes injected into the
base from the emitter, will diffuse around in the base and long before the die a natural death by recombination, they will
have reached the other side of the base

There they encounter the electrical field of the base-collector SCR which will sweep them rapidly towards the
collector region where they become majority carriers. In other words, we have a large hole component in the reverse
current of the BC diode (and the normal small electron component which we neglect).
A band diagram and the flow of carriers is shown schematically below in a band diagram and a current and carrier
flow diagram.
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Lets discuss the various currents going from left to right.

At the emitter contact, we have two hole currents, jEBh and jBEh that are converted to electron currents that carry a
negative charge away form the emitter. The technical current (mauve arrows) flows in the opposite direction by
convention.

For the base current two major components are important:

1. An electron current jBe, directly taken from the base contact, most of which is injected into the emitter. The
electrons are minority carriers there and recombine within a distance L with holes, causing the small hole current
component shown at the emitter contact.
2. An internal recombination current jrec caused by the few holes injected into the base from the emitter that
recombine in the base region with electrons, and which reduces jB e somewhat. This gives us

jBEh  =  jBe  –   jrec

Since all holes would recombine within L, we may approximate the fraction recombining in the base by

jrec  =  jEB h  · 
dbase

L

Last, the current at the collector contact is the hole current jEBh – jrec which will be converted into an electron current at
the contact.
The external terminal currents IE,IB, and IC thus are related by the simple equation

IE  =   IB  +  IC

A bipolar transistor, as we know, is a current amplifier. In black box terms this means that a small current at the the
input causes a large current at the output .

The input current is I B , the output current IC. This gives us a current amplification factor γ of

γ = 
IC

IB
 = 

IE

IB
 –  1

Lets neglect the small recombination current in the base for a minute. The emitter current (density) then is simply
the total current through a pn-junction, i.e. in the terminology from the picture jE = jBEh + jBe , while the base
current is just the electron component jBe.
This gives us for IE/IB and finally for γ:
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IE

IB
 = 

jBEh  +  jBe

jBe
 = κ  + 1

γ = 
IE

IB
 –  1 =  κ  +  1  –  1  =  κ  = 

NAc

NDon

Now this is really easy! We will obtain a large current amplification (easily 100 or more), if we use a lightly doped base
and a heavily doped emitter. And since we can use large base - collector voltages, we can get heavy power
amplification, too.

Making better approximations is not difficult either. Allowing somewhat different properties of electrons and holes
and a finite recombination current in the base, we get

γ =

   
Lh

τh · NAc

   

   

L e

τe ·
NDon

   

 · 




1
 – 

dbase

L





  ≈  
NDon

NDAc

  ·
 




 

1
 – 

dbase

L





The approximation again is for identical life times and diffusion lengths.

Obviously, you want to make the base width dbase small, and keep L large.

Real Bipolar Transistors
  

Real bipolar transistors, especially the very small ones in integrated circuits, are complicated affairs; for a quick glance
on how they are made and what the pnp or or npn part looks like, use the link.
Otherwise, everything mentioned in the context of real diodes applies to bipolar transistors just as well. And there are, of
course, some special topics, too.

But we will not discuss this any further, except to point out that the "small device" topic introduced for a simple p-n-
junction now becomes a new quality:
Besides the length of the emitter and collector part which are influencing currents in the way discussed, we now
have the width of the base region dbase which introduces a new quality with respect to device dimensions and
device performance.
The numerical value of dbase (or better, the relation dbase /L), does not just change the device properties
somewhat, but is the crucial parameter that brings the device into existence. A transistor with a base width of
several 100 µm simply is not a transistor, neither are two individual diodes soldered together.

The immediate and unavoidable consequence is that at this point of making semiconductor devices, we have to make
things real small.

Microtechnology - typical lengths around or below 1 µm (at least in one dimension) - is mandatory. There are no big
transistors in more than two dimensions.
Understanding microscopic properties of materials (demanding quantum theory, statistical thermodynamics, and so
on) becomes mandatory. Materials Science and Engineering was born.
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3.4.3 MOS Transistors

 
If you do not know the basic structure of a MOS transistor, you have a problem. Use the links and and make sure you
understand the contents.

Basic MOS transistor

Making integrated MOS transistors.
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4. Silicon: Special Properties and Emerging Technologies

4.1 Silicon on Insulator

4.1.1 General Remarks

4.1.2 Modern Developments

4.2 Etching of Silicon

4.2.1 General Remarks

4.2.2 Chemical Etching of Silicon
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4. Silicon: Special Properties and Emerging Technologies

4.1 Silicon on Insulator

4.1.1 General Remarks

 Intended Topics:
4.1 Silicon on Insulator

advantages and problems, basic device structure
Modern developments
Oxygen Implantation; waferbonding, smart cut technology

4.2 Etching of Silicon

Chemical etches
Isotropic and anisotropic dissolution, defect etches and anodic etching
Micromechanics and microsystem technology
Basic considerations, special process steps
Electrochemical etching, Porous Silicon and applications
Photonic crystals, filters, sensors, microtechnology, integrated wave guides, ...

4.3 Specialities

 Amorphes Si and applications
Structural and electronic properties, H - passivation, solar cells and FPDs

 SiGe: Materials ascpects and devices
HEMT, detectors (incl. Ge),
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4.1.2 Modern Developments

 Intended Topics
4.1 Silicon on Insulator

General
advantages and problems, basic device structure
Modern developments
Oxygen Implantation; waferbonding, smart cut technology

4.2 Etching of Silicon

Chemical etches
Isotropic and anisotropic dissolution, defect etches and anodic etching
Micromechanics and microsystem technology
Basic considerations, special process steps
Electrochemical etching, Porous Silicon and applications
Photonic crystals, filters, sensors, microtechnology, integrated wave guides, ...

4.3 Specialities

 Amorphes Si and applications
Structural and electronic properties, H - passivation, solar cells and FPDs

 SiGe: Materials ascpects and devices
HEMT, detectors (incl. Ge),
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4.2 Etching of Silicon

4.2.1 General Remarks

What is Etching?

Etching of silicon can mean several things:

The chemical dissolution of Si. In other words, Si will dissolve upon simple immersion in certain chemicals.

The electrochemical dissolution of Si. In this case dissolution takes place in certain chemicals called electrolytes
- different from the ones for purly chemical etching - if, and only if, electrical current is passed through the Si -
electrolyte junction.
The dissolution of Si in a Plasma. Dissolution takes place if Si is exposed to a suitable Plasma, i.e. a low density
"vapor" of electronically excited ionized atoms or molecules and free electrons which often have considerable kinetic
energies in addition. Usually plasma etching takes place at low concentrations, i.e. at low pressures. Plasma
etching may use chemicals (usually gases) different from those used for chemical or electrochemical etching.

Etching is not only a key process for any Si technology, it is rather poorly understood. In particular, the electrochemical
and plasma etching of Si is full of surprises, empirical receipes, and counts among the "black arts" compared e.g., to
rather well understood if complex processes like ion implantation or diffusion.

In typical microelectronic products, chemical etching has been abandoned in favor of plasma etching around 1985;
electrochemical etching so far has never been used.
However, for microsystems or "MEMS " (= micro electronic and mechanical systems) applications, chemical
etching is the crucial process par excellence, we will cover that briefly in an own subchapter.
Electrochemical etching, though known since the fifties, was seriously investigated only since about 1990. It
produces a (still growing) wealth of new phenomena and has a large potential for new products which is investigated
by many research groups. The first large scale product based on Si electrochemistry was introduced in 1999; it is
mentioned int he contect of the "Silicon on Insulator" subchapter
There are special big conferences dedicated to etching of Si, especially to plasma etching and electrochemical
etching.
We will neithrt treat plasma etching in this script, nor electrochemical etching as an emerging new technique.

 

Basic Experiments

The simple drawing below illustrates the basic etching experiment for the three etching modes mentioned.

 
Chemical etching

Silicon, here in the form of a cube - e.g. a single crystal with {100} surfaces - is
immersed in an etchant and will dissolve.

  
Electrochemical etching

  Some parts of the Si sample are exposed to the electrolyte. The back side contact and
other parts are protected. A voltage between the back side contact and a
counterelectrode of some inert material (usually Pt) allows to apply a voltage which
may cause a current to flow across the interface Si - electrolyte.

Many chemical reactions may occur, some will dissolve the Si.

    
Plasma etching

In a vacuum vessel, some gas is introduced and excited to a Plasma by, e.g., applying
a high-voltage/high-frequency power source between the Si and sone other electrode.

  Si may be etched, the products of the reactions and the unused gas are moved out of
the system.
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There are many (much more complicated) ways of producing a plasma and having it
interacct with the Si surface.

   

If any etching occurs, it may happen in several, very distinctive ways. They can be discussed most easily if we imagine
that the Si sample is a single crystal with, e.g., {100} surfaces as indicated the first picture.

The {100} cube may dissolve homogeneously. This looks something like this

The cube dissolves homogeneously, i.e. the dissolution rate is constant and
independent on any crystallographic or other details. The dissolution is
isotropic .

The {100} cube may dissolve in a way that changes its shape. This happens whenever the dissolution of some
crystallographic planes is faster that some other ones, or, generally speaking, if the dissolution rate depends on the
crystallographic orientation.

Certain crystallographic planes dissolve much faster than others, the
dissolution is anisotropic.

The dissolution may proceed by forming a pattern of its own e.g. by etching pores in the crystal. This self-induced
patter formation process may have some crystal anisotropy in addition, e.g. the pores are always oriented in certain
crystallographic directions. This not only may get extremely complicated in theory, it actually does happens in the
(electro)chemical etching of Si and it realy is excruciably complicated!
 

Patterns emerge; in the example small pores grow into the Si. There are
many other patterns obtainable; especially with electrochemical etching.

While the places where pores start to grow may be totally random, the
growth direction of the pores may be in a special crystallographic direction -
some crystal anisotropy comes in on a secondary level.

  
Other patterns may be tied to defects in the crystal, i.e. a little pore or pit develops wherever a defect, e.g. a
dislocation line intersects the surface - we have defect etching. Again, this may work (very) differently on different
crystallographic surfaces

By now it becomes clear that etching is very complex and has many facets to it. The situation is becoming even more
complex if we consider etching through a mask, i.e. only defined parts of the Si surface are exposed to the etching
agent.

This is of course the standard procedure encountered in technology. All the observations made above apply and
some new points may come in on their own.
However, we will not treat this case here, but in the context of the upcoming chapters and subchapters.

Etching of Si always can be done in two principially unrelated ways (which often occur in a mixture, causing some of
the complication):

Direct dissolution, cursorily expressed by the "chemical" formula
Si + something = Si-compound(dissolved) + something else.
A simple example (and reality is actually not as simple as that) could be

Si + 2HF  ⇒ SiF2 + H2

Oxidation in a first step, followed by oxide dissolution in a second step, e.g.

HF + HNO3  ⇒ SiO2 + .....
   

SiO2 + 2HF  ⇒ SiF2 + ....

These simple examples make clear that even the basic chemistry is not so simple; we will come to that later.
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One last general remark:

The truncated chemical equations above use hydrofluoric acid (HF), and nitric acid (HNO3). This is not accidential,
but what you have to use in many cases. Some other chemicals may be useful, too, but there is an important
general rule:

Etching Silicon always
uses some of the most
dangerous chemicals

known to mankind!
Beware and be sure
you know what you

are doing!

Hydrofluorous acid is nothing to joke about! The same is true for most of the other chemicals involved.

However, taking proper precautions, experiments are possible and routinely done. Huge quantities of the dangerous
chemicals are used up every day in semiconductor technology and there have been very few serious accidents.
Do not be afraid of using chemical etches! Make sure you know the safety measures and have somebody with
experience initiate you. Most accidents happen because people are careless or afraid!
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4.2.2 Chemical Etching of Silicon

Isotropic Etching of Silicon

 Module is unfinished
If we neglect exotic mixtures of chemicals, the universal isotropic Si etchant is a mixture of HNO3 + HF + CH3COOH .

In other words: Mix nitric acid, hydrofluoric acid and acidic acid (= HAc)! The resultant mixture is known as CPx; the
x being 1 ...4, depending on the exact composition - and this abbreviation was chosen for good reasons!
The etching characteristics you obtain depend very much on the exact composition and the temperature, possibly
on the doping of the Si, and to some extent on some small amounts of other chemicals that might be added to the
mixture.
Some data for two typical mixtures are presented below.

 

Composition
HF : HNO3 :

HAc

Temp.
oC

Etch rate
µm/min

Anisotropy
<100> : <111>

Masks for
selective
etching

Remarks

1 : 3 : 8 20 3 1 : 1 none

Etch rate
strongly
reduced
for
doping
n: <3 ·
1017 ,
p: <3 ·
1015

1 : 2 : 1 20 40 1 : 1 none

CP etches attack about everything - don't store them in a glass bottle, it will dissolve too!

Only some polymers, most notably PVC and Teflon, are CP prove

They generally work by oxidizing the Si (thats what the is doing) and dissolving the oxide (the job of the HF).

HAc is mostly just for diluting the mixture

However, HAc is also....

A big problem with the CP etches is that they also dissolve all possible masks - usually SiO2 or Si3N4 layers - so they
cannot be used for selective etching

At best, Si3N4 may last for some time - if you hurry up selective etching becomes possible in a confined way.

For a strong imbalance between HNO3 and HF, the etchant may change its character:

Most notably (and not very suprisingly), the etch rate comes way down

More surprisingly (but not really, if you think about it): it may now be a defect etch, i.e. it attacks Si much faster at
the place of defects.

While only HF dissolves SiO2 , all strong oxidizing agents can oxidize Si. It thus is possible to replace the HNO3 by
some other oxidant. Essentially, two oxidizers are used:
First, H2SO4 can be used instead of HNO3, typically in a ratio HF : H2SO4 : HAc = 1 : 1: 5

While inferior in over-all "quality" to the CP etches, it does not attack Si3N4 masks very strongly and thus can be
used for selective (isoptopic) etching.
Etch rates are around (2...5) µm/min, again depending on someother factors too.

Second, CrO3 is used, a relatively weak oxidizer for Si. It only works on "soft spots", i.e. at surface areas were the
bonds are weakened because of defects.

Hf + CrO3 + HAc + many other chemicals (with no clear role) is the base of most defect etchants - a very important
techique in semiconductor development
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5. Fundamentals of Optoelectronics

5.1 Materials and Radiative Recombination

5.1.1 Basic Questions and Material Issues

Basic Questions

With "optoelectronics" in the context of this lecture we mean only electronic devices based on semiconductors where recombination
processes emit light. We call this radiation process spontaneous emission of light, because it just happens statistically without any other
ingredients but electrons and holes.

We thus do not (yet) look at the opposite process - the absorption of light, important in photo-diodes (or solar cells as already
discussed before).
Transmission of light in waveguides (which might be integrated on a chip) is also not considered here.

We have seen that silicon is an indirect semiconductor and recombination proceeds via deep levels. The energy released does not produce
photons in an appreciable amount and Si is therefore not useful for optoelectronic applications.

This is, however, not a general truth. While recombination via deep levels as the required third partner does not produce light, indeed,
recombination proceeding via some other third partner may. We will see that there are indirect semiconductors that emit enough light
to be useful for practical applications.
But generally, we are looking for direct semiconductors where it can be expected that recombination does result in light production.

This leads us to some general questions which can be translated to requests for material properties. Let us consider the more fundamental
ones:
The first question is: What is the wavelength of the light produced?

If the light is produced by direct band-to-band recombination, we have of course

h · ν  =  EC  –  EV

If the radiative recombination proceeds from some other energy states we simply replace EC – EV  by ∆E, the relevant energy
difference.
With cmat = ν · λ, and cmat = velocity of light in the material = c0 /n (with c0 = velocity of light in vacuum, and n = refractive index of
the material), we obtain

λ  = 
 h · c0 

 ∆E · n 

This leaves us with further material-related questions:

First, we are asking about the value of ∆E, or in most cases EC – EV,  for optoelectronic materials. The answer comes from the band
diagram and from finer details, still to be considered.
Second, we now must know the (possibly complex) refractive index of the material. This is not only important for the value of the
wave length in the material, but especially for the transmission of light out of the material – where the difference in the refractive indices
between two materials is a prime property of interest. The refractive index of a semiconductor is a new property that we did not
address before.

The second question coming to mind is: How much light is produced by recombination, or more precisely, what is the quantum efficiency
ηqu, defined as the fraction of recombination events producing light?

For this we have to look at the various pathways open for recombination. In the preceding chapters we have discussed recombination in
general and for one particular mechanism in detail.
However, there might be several mechanisms for recombination open to minority carriers, and only one might produce light. We thus
must consider recombination in optoelectronic materials in more detail.

Third, we may wonder about the absolute intensity or even more specific, the intensity density we can produce.

In other words, how many light producing recombination events per second are attainable in a given volume of material? What is the
limit and which factors determine it?
Or, reformulated in technical terms: How do we produce a large non-equilibrium density of minorities (and majorities, too)? How do we
inject electronically (by currents driven by external voltages) high densities of carriers in small volumes with no way out but
recombination?
This question leads to the overwhelmingly complex issue of heterojunctions, quantum-wells, and the like.

Now that we produced light, we must ask our fourth question: How do we get it out of the semiconductor ? Which percentage of the light
produced will actually escape – some light, for sure, will be absorbed in the material.

Will it come out in all directions, with a preferred direction, or even as a LASER beam?

What do we have to do to optimize whatever we want?

How do we meet the two basic requirements for LASER activity – inversion and feed-back (whatever that means; we will come back to
it)?

We now ask the fifth question: What can we do to modify the wavelength of the emitted light?
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Can we "tune" a given semiconductor, or mix different ones? What are the criteria for success?

And finally, for question number six, we must consider the technology: How do we make the needed materials and devices?

What technologies exist, what are the pros and cons?

What can we use from Si technology? What kind of technologies do we need that are specific to optoelectronics ?

All these questions are interrelated; very often we can not deal with just one at a time. In other words, if you optimize one property, you will
change most of the others, too.

Selecting materials and processes for an optimized device is a complex process and still a topic of front-end research.

While much progress has been made during the last 20 years or so, there is still no cheap and reliable blue semiconductor Laser
although first prototypes based on the fairly new technical semiconductor GaN (gallium nitride) have been introduced around 1998.
It is a safe bet that we will see a lot more progress for the next 20 years, and that it will come from rather involved physics and
materials research employing quite a bit of quantum theory, new concepts like "photonic crystals" and "spintronics" – buzz words
that you, the student, may not have heard yet, but that may well become part of your professional career.
 

Material Issues

Pondering the questions from above, it becomes clear very quickly that we need several suitable semiconductors to cover all aspects of
optoelectronics.

It also becomes clear that we have to look at more properties than we did for Si – the dielectric constant, e.g., is a prime parameter
now.
The value of the band gap, too, is now of prime importance. (We wouldn't have cared much if it would have been somewhat different in
Si!)
The precise mechanisms for recombination are a prime matter of interest. In Si, all that counted was that you had some, but not too
many deep level around midgap, giving a large recombination life time. With optoelectronics we may have to make sure that
recombination proceeds exactly as needed.
Let's start with looking at major semiconductors and their properties in detail. (If you are interested in more data, or in other
semiconductors, have a look at the relevant data collection of the Ioffe Institute or at that of Derek Palmer.)
 

Properties Si Ge GaAs InP InSb In0.53Ga0.47As GaP GaN SiC Diamond Remarks

Crystal

Unit weight
[mol]

29.09  144.63 145.79  168.545      

Density
[g/cm3]

2.33 5.32 5.32 5.49 5.77 5.49 4.14 6.1 3.166 (cubic)
3.211 (hex)

3.51  

Crystal
structure

Diamond Diamond Zincblende
(Sphalerite)

Zincblende Zincblende Zincblende Zincblende Wurtzite Many
variants:
cubic, hex,
rhombohedral

Diamond  

Lattice
constant
[nm]

0.5431 0.565 0.565 0.587 0.648 0.5867 0.545 a =
0.319
c =
0.519

a = 0.30
c many
values

0.357  

Transport properties

Band gap
[eV]

1.12 0.66 1.42 1.35 0.17 0.75 2.26 3.4 2.39 - 3.26 5.47  

Type indirect indirect direct direct  direct indirect direct indirect indirect  

Effective e-

mass
[m*/m0]

0.98      0.35 0.2 0.24 - 0.7   

Effective h+

mass
[m*/m0]
light
heavy

0.16
0.49

 

0.082
0.45

0.12
0.56

7.3

0.051
0.50

 
0.14
0.79 0.3

1.4
0.9

  

Neff of CB
[1018 cm–3]

28
(32)

10.4 0.47 0.54 0.042 0.21 18     

Neff of VB
[1018 cm–3]

10
(18 )

6 7 2.9  7.4 19     

n i [106

cm–3]
6,600
(13,000)

 2.2 5.7  63,000     

Mobility
(undoped)
[cm2/Vs]
µn
µh

1,500
450

1,900
3,900

8,500
450

5,000
200

80,000
1,250

14,000
400

300
150

1,000
200

500 - 1,000
20 - 50

200 -
2,200
1,800 -
2,100
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Lifetime
(general)
[µs]

2,500  0.01 0.005  0.02      

Mechanism
of lumines-
cence

none  band-band band-band  band-band exciton,
if doped

band-
band

   

Dielectric properties

Dielectric
constant
at high
frequency
(static)

11.7 16 10.9
(12.9)

9.6
(12.4)

15.7
(16.8)

13.7 9.1
(11.1)

εxx, εzz:
5.35,
5.8
(9.5,
10.4)

εxx, ε zz:
6.5, 6.7
(9.7, 10)

5.5  

Breakdown
field
strength
[kV/cm]

300  350 400  100   5,000    

Specific
intrinsic
resistance
[MΩcm]

0.2  310 11  0.000,8      

Electron
affinity
[eV]

4.0 4.05 4.07 4.4 4.59 4.63 4.3 4.1    

Thermal Properties

Expansion
coefficient
[10–6 /K]

2.6 5.9 6.86 4.75 5.37 5.66 5.3 5.59 (a)
3.17 (c)

 1  

Therm.
conductivity
[W/cmK]

1.5 0.58 0.45 0.68 0.18 0.05 1.1 1.3 5.0 22 Cu: 4.01

Specific
heat
[J/gK]

0.7 0.31 0.35 0.31 0.2 0.29 0.43 0.49 0.671 0.428 Cu: 0.38

Melting
point
[oC]

1,412 937 1,238 1,062 527 970 1,457 2,500    

 
Silicon is included as a reference (if there are several numbers, they are from different sources). We find expected properties, but also,
perhaps, some unexpected ones.

Dielectric constants are relatively large even at the very high optical frequencies. This is not necessarily self-evident since at least for
Si the only polarization mechanism operational is atomic polarization, i.e. the shift of electrons relative to the atom core.
There is at least one recombination mechanism not mentioned before: Exciton recombination.

Let's continue by looking at recombination mechanisms in more detail.
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5.1.2 Recombination and Luminescence

High Injection Approximations for Recombination Rates

Luminescence is the word for light emission after some energy was deposited in the material.

Photoluminescence describes light emission stimulated by exposing the material to light – by necessity with a
higher energy than the energy of the luminescence light. Photoluminescence is also called fluorescence if the
emission happens less than about 1 µs after the excitation, and phosphorescence if it takes long times – up to
hours and days – for the emission.
Cathodoluminescence describes excitation by energy-rich electrons, chemoluminescence provides the
necessary energy by chemical reactions.
Here we are interested in electroluminescence, in particular in injection luminescence.

Injection luminescence occurs if surplus carriers are injected into a semiconductor which then recombine via a radiative
channel.

This implies non-equilibrium, i.e. ne · nh > ni2 and net recombination rates U given by the basic equation from the
recombination theory for direct semiconductors:

  U =  R – Gtherm  =  r · (ne · nh – ni2)  =  r · ni2 ·




exp
EFe – EFh

kT 
  –   1





Some, but not necessarily all of the recombination events described by U produce light, and these radiative
recombination channels are of particular interest for optoelectronics.

Since optoelectronic devices usually are made to produce plenty of light, the deviation of the carrier densities from
equilibrium must be large to obtain large values of U.

If we write the densities, as before, as ne,h = ne,h(equ) + ∆ne,h, we now may use the simplest possible
approximation called high injection approximation:

∆ne,h  >> nmin(equ)

i.e. the minority carrier density is far above equilibrium.

That is different from the approximation made before, where we assumed that ∆ne,h was small.

The surplus carriers contained in ∆ne,h are always injected into the volume under consideration (called recombination
zone or recombination volume), usually by forward currents across a junction. They always must come in equal
numbers, i.e. in pairs to maintain charge neutrality; otherwise large electrical fields would be generated that would
restore neutrality. We thus have

∆ne  = ∆nh

The recombination volume usually is the space charge region of a junction or an other volume designed to have low
carrier densities in equilibrium. Since the equilibrium density of both carrier types in the SCR is automatically very
low, we may easily reach the high injection case. For a bulk piece of a (doped) semiconductor this is much more
difficult – you would have to illuminate with extremely high intensity to increase the minority carrier density by some
factor.

The surplus density of carriers decays with a characteristic lifetime τ which is given by the individual life times of all
recombination channels open to the carriers. Since R >> Gtherm for the high injection case, we have in analogy to the
approximation made for (small) deviations from equilibrium:

U  =  R  –  Gtherm  ≈ R  = 
n

τ

We call this approximation (where we neglect G) "high-injection " approximation or the high injection case
because the high density of surplus carriers is usually provided by injecting them over a forwardly biased junction
into the region of interest.
Note that while the rate equations are formally the same for high or low injection (or everything in between), τ is not
a constant but may depend on the degree of injection (as we will see).
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Now we have to look at all the possibilities for recombination – called recombination channels – that are open for
carriers as possible ways back to equilibrium. Recombination channels generating light we will call radiative channels.
The band-band recombination channel (with which we started above, using the full equations) can now be extremely
simplified:

Rb-b  =  v · σ · n2

or, considering that v · σ may no longer be totally correct as the proportionality factor,

Rb-b  =    Bb-b · n2

and the index "b-b " denotes band-band recombination. The proportionality constant B is occasionally called a
recombination coefficient.

If we use the same approximations for the recombination channel via deep levels, we obtain a rather simple relation, too,
for the recombination rate Rdl

Rdl  = Bdl · n

With Bdl = recombination coefficient for this case.

Before we look at further recombination channels, we will give some thought to the equilibrium case.

In thermal equilibrium, we still have generation and recombination described by the equilibrium rates Gtherm and
Rtherm and Utherm = Gtherm – Rtherm = 0.
Now a tough question comes up: If recombination occurs via band-band recombination and results in the emission
of a photon, does this mean that our piece of semiconductor, just lying there, would emit photons and thus glow in
the dark?
Obviously that can not be. Energy would be transported out of the semiconductor which means it would become
cooler just lying there, a clear violation of the "second law". On the other hand, a single recombination event "does
not know" if it belongs to equilibrium or non-equilibrium, so radiation must be produced, even in equilibrium. We
seem to have a paradox .

The apparent paradox becomes solved as soon as we consider that any piece of a material "glows" in the dark (or in the
bright) because it emits and absorbs radiation leading to an equilibrium distribution of radiation intensity versus wave
length – the famous "black body" radiation of Max Planck.

Recombination events in equilibrium do produce light – but the photons mostly will become reabsorbed and, in
general, will not leave the material. The small amount that does escape to the environment must be exactly
balanced by electromagnetic radiation absorbed from the environment.
This topic will be considered in more detail in an advanced module.

 

Additional Recombination Channels
  

So far we considered only band-band recombination and recombination via deep levels. There are, however, more
recombination channels, some of which are particular to compound semiconductors.
But first we look at universal mechanisms occurring in all semiconductors. They are:

Auger recombination. In this case the energy of the recombination event is transferred to another electron in the
conduction band, which then looses its surplus energy by "thermalization", i.e. by transferring it to the phonons of
the lattice. This means that no light is produced.
Donor–acceptor recombination or recombination via "shallow levels". This includes transitions from a donor level to
an acceptor level or to the valence band, and transitions form the conduction band to an acceptor level.
Mixed forms: From a donor level via a deep level to the valence band, etc.

Now for material specific recombination channels. The most important one with direct technical uses is recombination
via "localized excitons".

Excitons are something like hydrogen atoms (or, even closer in similarity, positronium = atom consisting of electron
and positron) – except that a hole and not a proton is the partner of the electron. They are thus electron–hole pairs
bound by electrostatic interaction. They can form in any semiconductor, are mobile and do not live very long at room
temperature because their binding energy is very small. They decompose ("get ionized") into a free electron and a
free hole.
If you wonder why they do not simply recombine, think about it. They can't possibly have the same wave vector (how
would they "circle" each other then?) and thus need a third partner for the recombination process to occur.
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On occasion, however, they might become trapped at certain lattice defects and then recombine, emitting light.
GaP, though an indirect semiconductor, can be made to emit light by enforcing this mechanism.
We will come back to excitons later; more about them can be found in an advanced module.

The picture below illustrates these points.

The picture is far too simple and we will have to consider some of the processes in more detail later (especially
recombination via excitons). Here we look at Auger recombination and donor–acceptor recombination.

Even without going into details, it is rather clear that (radiative) donor–acceptor recombination as well as
band–dopant recombination (in both variants) are not all that different from direct (and radiative) band–band
recombination. Especially for relatively high doping densities, when the individual energy levels from the doping
atoms overlap forming a small band in the band gap, we might simply add the dopant states to the states in the
conduction or valence band, respectively.
We then can treat donor-acceptor recombination as subsets of the band-band recombination, possibly adjusting the
recombination coefficient Bb-b somewhat.

This leaves us with Auger recombination. This is an important recombination process that cannot be avoided and that
always reduces the quantum yield of radiation production.

It has not been covered in the treatment of recombination before, and we will not attempt a formal treatment here. It
is, however, simple to understand in the context of the high-injection approximation used for optoelectronics.
Since you need three carriers at the same time at the same place (the e– and h+ that recombine plus a third carrier
to remove the energy), the Auger recombination rate, RA, is proportional to the third power of the carrier density n:

RA  =  BA · n3

This means that for large carrier densities n (always way above equilibrium), and therefore large doping, Auger
recombination sooner or later will be the dominating process, hence limiting the yield of radiative transitions.
 

Total Recombination and Quantum Yield
  

All recombination processes will occur independently and the total recombination rate will be determined by the
combination of all channels.

The situation is totally analogous to the flow of current through several resistors switched in parallel. The individual
recombination rates Ri add up (like the currents) and for the total recombination rate we have

Rtotal  =   Σi  Ri  =  Σ i  
n 

τi

  =  n  ·  Σ i   
1 

τi

The total recombination time τtotal is thus defined by

1 

τtotal

 =  
1 

τb-b

 + 
1 

τdl

 + 
1 

τA

 + 
1 

τexciton

 + .....

Since we are only interested in radiative and non-radiative channels, we may write this as
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1 

τtotal

 = 
1 

τrad

 + 
1 

τnon-rad

Rtotal  =  Rrad  +  Rnon-rad   = 
n 

τrad

 + 
n 

τnon-rad

The quantum efficiency ηqu introduced before now can be calculated. It is given by the fraction of Rrad relative to Rtotal,
or

ηqu  =  
Rrad

Rtotal

 =  
1/τrad

1/τrad  +  1/τnon-rad

Obviously, the result is

ηqu  =  

  1 

   1 + 
τrad

τ non-rad

   

That is easy enough, but now need some numbers for the recombination coefficients in order to get some feeling for
what is going on in different semiconductors.

It should be clear that the Bi defined above are related to quantities like the thermal velocity, the capture cross
sections, the density of deep (and shallow) levels, and so on – they depend to some extent on the particular
circumstances of the semiconductor considered. e.g. doping, cleanliness, defect density, etc.
It should also be clear the Bi are not absolute constants for a given materials but only useful as long as the
approximations used are holding. in other words, there are no universal numbers for a certain semiconductor. We
only can give typical numbers.
With this disclaimers in mind, we use the following values (if two numbers are included, they come from different
sources). Yellow denotes the indirect semiconductors and the GaP value is for the very unlikely direct
recombination without excitons.

(T = 300K)
Si Ge GaAs InP GaP

B τ [µs] B τ [µs] B τ [µs] B τ [µs] B τ [µs]

Bdl
[s–1] 1 · 105    1 · 108      

Bb-b
[cm3s–1 ]

1 · 10–14

1.8 · 10–15 5,500 5.3 · 10–14 200 3 · 10–10

7.2 · 10–10 0.015 1.26 · 10–9 0.008 5.4 · 105 2,000

BA
[cm6s–1] 2 · 10–32    1 · 10–27      

Now we can construct a recombination rate vs. surplus carrier density diagram as follows:
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We can see a few interesting points:

The recombination rate in Si is generally much smaller than in GaAs – a direct effect of the much larger lifetimes.

Direct recombination in Si is not strictly forbidden – rather, it is just unlikely. At a typical carrier density of 1018

cm–3 we have about 1022 photons generated in Si per s and cm3 compared to about 3 · 1026 in GaAs.
Rb-b in GaAs is similar to the recombination rates of the Auger and deep level channels at densities around 4 · 1017

cm–3, whereas in Si, for most densities Rb-b is much smaller than the other recombination rates.
Although for large carrier densities the Auger recombination process always dominates, it may still be useful to
increase n: While the quantum efficiency goes down, the amount of light produced still increases with n.
For very large carrier densities (say 1019 cm–3 and beyond as occasionally encountered in power circuits), even Si
may produce some visible light.

The GaAs curves now provide a first answer to our second question about the quantum efficiency.

For n = 1016 cm–3, we have about 4 · 1022 radiative recombination events per s and cm3 out of a total of about 1024

per s and cm3 , which gives a quantum efficiency of 4 %.
At the high density end, around n = 1019 cm–3, the situation is similar, the quantum efficiency is in the few percent
range.
The highest quantum efficiency is around 30 % for densities around n = 5 · 1017 cm–3.

Of course, given the values of the recombination coefficients, we could calculate the quantum efficiency precisely, but
that would not be very helpful because real devices are more sophisticated than the simple forwardly biased junction
implicitly assumed in this consideration.

This means that we now must look more closely at the important compound semiconductors, especially on how
they are doped and what typical differences to Si occur.
We will, however, first do a little exercise for injection across a straight p-n junction in order to get acquainted with
some real numbers for carrier densities produceable by injection.

Exercise 5.1.2-1
Calculate carrier densities from the

forward current of junctions.
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5.1.3 Doping of Compound Semiconductors

Some Basic Considerations

Essentially, the semiconducting properties of silicon stem from the sp3 hybrid bonds formed between electrically neutral
atoms.

Two Si atoms donate one electron each to all four sp3 hybrid bonds, forming the familiar diamond type lattice.

Substituting a Si atom by a group III or group V element produces a mobile hole or electron and an immobile ion in
the familiar way.

All III-V compounds also form sp3 hybrid orbitals, but there is now a big difference to Si (or Ge, or diamond-C): The
binding, which was totally covalent for the elemental semiconductors, now has an ionic component.

This is simply due to the fact that different atoms differ in their electronegativity, describing the affinity to electrons of
the element. The numbers in brackets give the electronegativity quantitatively: The larger the value, the stronger the
effect.

IIa, b III IV V VI

Be (1.6) B (2.0) C (2.6) N (3.1) O (3.4)

Mg (1.3) Al (1.5) Si (1.9) P (2.2) S (2.6)

Zn (1.7) Ga (1.8) Ge (2.0) As (2.2) Se (2.6)

Cd (1.5) In (1.5) Sn (1.7) Sb (1.8) Te (2.7)

Hg (1.9) Tl (1.6) Pb (1.6) Bi (1.7) Po (2.0)

A more electronegative element will attract the electrons from the partner more strongly, become more negatively
charged, and thus increase the ionic part of the binding.

The percentage p of the ionic binding energy varies for the various compounds.

The difference in electronegativity of the atoms in a compound semiconductor gives a first measure for p.

To give some examples: For Si we have p = 0, for GaAs we find p = 0.08.

Doping is still achieved by introducing specific atoms as substitutional impurities. But in contrast to elemental
semiconductors, we now have more possibilities as can be seen by looking at the relevant part of the periodic table (the
elements in yellow cells are never used for doping of compound semiconductors).

We can replace the group III elements by group II elements to produce acceptors and the group V elements by
group VI elements to produce donors – in principle.
But we can also replace both the group III and group V elements by group IV elements which, however, may
generate donor or acceptor levels in the band gap of some compounds – we have amphoteric doping.
We could also replace the atoms of the compound by an isoelectronic atom – group III elements by some other
group III elements, and the same thing for the group V partner. In Si, this would mean replacing a Si atom by e.g. a
Ge or C atom – which is not very exciting. In compounds, however, doping with isoeletronic atoms produces
differences in the ionic part of the binding and therefore local potential differences with noteworthy effects as we
shall see below.
We could even replace an atom of the lattice by a small molecule – isoelectronic or not – and achieve a doping
effect.

Well, in Si we could also use molecules and all group III or group V elements – but in reality only B, As, P, and
sometimes Sb, Ga or Al are used.

In Si, we do not use the group III elements In and Tl, neither the group V elements N and Bi. The reasons are
"technical": They may be difficult to incorporate in a crystal, their solubility may be too small, their diffusivity too
high (or too low?), or their energy levels in the band gap not suitable.

The same situation occurs with compound semiconductors.

There are optimum solutions to doping, depending on the type of semiconductor, the technology available or
mandated by other criteria, and so on and so forth.
There are therefore no general rules for optimal doping, and here we will only discuss amphoteric doping and
isoelectronic doping in somewhat more detail.
The energy levels of some dopants and other impurities in some III-V semiconductors are shown in an illustration
module.
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Amphoteric Doping
  

A prime case of amphoteric doping is the incorporation of Si into GaAs. If the Si atoms replace Ga atoms, they act as
donors, and as acceptors if they occupy As lattice sites. How does this work?

A Si atom has four electrons disposable for binding. If it replaces a Ga atom that had only three electrons, the As
partner has to supply one electron less than before to make up for its "deficient" partner Ga, and the surplus
electron will only be weakly bound – it will easily escape into the conduction band.
Si on a Ga site causes the release of an electron from the As, because the electrons are more strongly bound to Si
than to As – thus, in this case Si acts as donor even so the electron is actually supplied by the As.
Contrariwise, if an As atom is replaced by a Si atom, the new twosome is now short one electron. It can therefore
take up an electron from the valence band – Si now acts as an acceptor.

While this seems to offer an elegant way for doping, the tough question now is: How do we control which lattice sites
are occupied by Si?

In other words: On what kind of lattice sites will we find the Si atoms after it was ion-implanted, diffused into the
crystal from the outside world, or incorporated directly during crystal growth procedures, or thin film growth?

This question cannot be easily answered from first principles. Two guidelines are:

At low temperatures (T ≤ 700 °C), Si will prefer to sit on As sites – it acts as an acceptor, with an energy level about
35 meV above the valence band edge.
At high temperatures (T ≥ 900 °C), it tends to sit at Ga sites and acts as a donor, with an energy level about 6 meV
below the conduction band edge.
If Si is incorporated into a GaAs melt, large Si concentrations tend to produce donors, small concentrations
acceptors.

More about amphoteric doping and its practical aspects will follow in the various chapters about specific compound
semiconductors.
 

Isoelectronic "Doping" and Bound Excitons
  

If we introduce isoelectronic replacements in the lattice – e.g., a group-V atom (like N or Sb substituting a P atom), or a
molecule (like ZnO substituting a GaP pair in the GaP lattice), or even a larger entity (like the Li-Li-O complex in GaP,
with one interstitial Li, the other Li substituting Ga, and O substituting P) – we do not "dope" in the conventional sense
of the word. We rather change the ionic component of the local binding.

Since the introduction of isoelectronic elements is deliberate with a specific purpose in mind, we deal with it under
the general heading "doping", keeping in mind that we do not change the carrier density in this way, but their
recombination behavior.
Doping with isoelectronic elements may not do much in most compound semiconductors, but it can have
pronounced effects in others by providing new radiative recombination channels due to an interaction of the
isoelectronic dopant and electron–hole pairs called excitons.
The paradigmatic semiconductor for isoelectronic doping is GaP, an indirect semiconductor. It is used as a strong
emitter of green light, however, by doping it with isoelectronic elements and using the radiative decay of excitons
bound to the doping elements.

How does this work? There are several crucial ingredients, all from rather involved solid state physics:

First, we need excitons.

Second, we need to have the excitons bound to isoelectronic dopants.

Third, we need to have a radiative recombination of the electron and hole constituting the exciton – despite the
nominal violation of the crystal momentum.

A detailed treatment of these points (explaining, among other things, why this "works" in GaP, but not in many other
compound semiconductors) is not possible in the context of this lectures course. We will only superficially look at the
basics; somewhat more information is contained in an advanced module.

Again: What is an exciton? Imagine the generation of an electron–hole pair, e.g., by irradiating a semiconductor with
light.

If the photon energy is large enough to lift an electron all the way from the valence band to the conduction band in a
direct transition, you now have a free electron and a free hole which move about the crystal in a random way.
Now imagine that the hole and the electron stay so close to each other (i.e. less than a Debye length) in real space
that they feel the Coulomb attraction. They are then bound to each other with a certain binding energy Eb, and their
coordinates in r-space are (nearly) identical, but still undetermined.
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Bound together like that, they behave like an individual particle, and this particle is called exciton (standard symbol:
X). Note that, since it consists of two fermions with spin = ½, an exciton is a boson. Thus, in principle, arbitraily
many excitons can be present.

We already know a system where one negative elementary charge is bound to one positive one, forming a new "particle"
– it is called "hydrogen atom". The only difference between an exciton and a hydrogen atom is that the mass of the hole
is much smaller than the mass of the proton (and, of course, that our exciton can only exist in a solid).

From a more advanced treatment of the hydrogen atom, where the electron mass is not neglected with respect to
the proton mass, we can immediately carry over the solution of the relevant Schrödinger equation to an exciton. Of
interest are especially the allowed energy states EX of the exciton, for which we obtain

EX(k)  =  Egap  –  
mred · e4

8 · (h · ε0 εr · n)2
  +  

h2 k2  

8π2 · (me + mh)

With n = quantum number = 1, 2, 3, ... and mred = reduced mass (from 1/mred = 1/me + 1/m h ). Although not
written explicitly, always the relevant effective masses (of electron and hole) have to be used for the exciton.
The first term simply accounts for the crystal energy, the second one is straight from the hydrogen atom (see below
for details), and the third term is a correction if the two particles are not at the same place in k-space (it is zero for
ke = –kh or ke = kh = 0 as it will be for most direct semiconductors), giving the kinetic energy of the exciton as a
whole.

In total we have a system of energies smaller than the band gap energy, with the "deepest" level defined by the following
energy difference relative to the band gap – which is just the exciton binding energy mentioned above (also known as the
Rydberg energy of the exciton), being directly related to the standard Rydberg energy of the hydrogen atom (1 Ry ≈ 13.6
eV) as follows:

Eb  = 
mred · e4

8 · (ε0 εr · h)2
 = 

mred

m0 · εr2
× 1 Ry

To estimate the order of magnitude relevant for the exciton binding energy, we use 0.5 m0 for both effective masses,
giving mred = 0.25 m0, and a (static) dielectric constant of εr ≈ 10, resulting in Eb ≈ 34 meV.
This is already a rather reasonable value. The actual exciton binding energy depends mainly on the effective mass of
the respective semiconductor. As an example, a properly calculated value for GaAs gives Eb = 4.4 meV, which is
close to the experimental one.
More values can be found in the advanced module.

Due to the exciton binding energy, it takes exactly Eb less energy to create an exciton than a free electron–hole pair.
Since both creation processes start by exciting the electron from the top of the valence band, one commonly finds the
picture of excitonic energy levels sitting in the band gap, close to the conduction band.

This involves several fundamental misconceptions:
– The symmetry between electron and hole, valid for the exciton, is lost since the hole is imagined to stay at the top
of the valence band;
– the excitonic energies do not represent usual electronic states of the crystal, because excitons are bosons.
Nevertheless, for simplicity reasons we stick to this picture. In k-space for GaP this looks like this:

Since Eb for a free exciton – that moves about the crystal, transporting energy, but not charge – is just a few meV,
similar to the typical energy difference from a donor level to the conduction band, it will not live very long at room
temperature: The thermal energy then is enough to ionize the exciton, i.e. to remove the electron (or the hole; your
choice – everything is rather symmetrical), and we are left with a free hole and a free electron.
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Even so the electron and the hole are almost at the same place, recombination is not possible without the help of
phonons, so it is rather unlikely – as stated before. Excitons in most semiconductors therefore only make their
presence known at low temperatures – and in the absorption of light, because you will already find some absorption
for light with an energy slightly below the band gap energy!

Now imagine an isoelectronic dopant in GaP, e.g. N instead of P. It distorts the potential for electrons a little bit and
strictly locally; and in GaP this will lower the energy of the electrons locally – inside a radius similar to the lattice
constant.

An electron thus may become bound to the isoelectronic dopant – i.e. it "revolves" around the isoelectronic atom. It
may now attract a hole by Coulomb interaction and thus form a bound exciton. This is an easy, albeit
oversimplified way, to conceive bound excitons.

The net effect of a binding interaction of an isoelectronic dopant and an exciton is twofold:

The exciton energy levels move "down" from the free exciton level by an amount equal to the binding energy of the
electron to the isoelectronic dopant; i.e. Eb increases. In some cases – naturally for GaP – the additional binding
energy may be in the order of 10 meV, and this pushes the exciton levels so far below the conduction band that the
bound exciton is now relatively stable at room temperature.

The exciton is now localized in space. This demands that its coordinates in k-space must be somewhat undetermined
thanks to the uncertainty principle which requires that

∆(  k) · ∆r  > h

With k = momentum. Since ∆r is in the order of the length scale of the attractive potential, i.e., a lattice constant,
∆k will be in the order of a/(2π), i.e., a Brillouin zone width.
In other words, the bound exciton can have any wave vector in the 1st Brillouin zone with a certain, not too small
probability.

This has an important consequence: Recombination for bound excitons is easy! It is still an indirect recombination that
needs a phonon as a third partner. But in contrast to indirect recombination between free electrons and holes, which
needs a phonon with a precisely matched k-vector, any phonon will do in this case because it always matches one of
the k-vectors from the spectrum accessible to the bound exciton.

If bound excitons exist (at room temperature), their recombination provides a very efficient channel for establishing
equilibrium and thus a possibility to generate light with an energy given by the exciton energy, i.e., the bandgap
minus a small exciton binding energy.
This is essentially the mechanism to extract light out of the indirect semiconductor GaP!

You should now have a lot of questions:

Why GaP? How about other III-V compound semiconductors?

How about more exotic semiconductors, e.g. the II-VI system or organic semiconductors?

Anything similar for elemental semiconductors? After all, putting Ge into Si also changes the potential locally.

How about other defects, not necessarily isoelectronic? For example, ionized donors and acceptors also attract and
possibly "bind" free electrons or holes, respectively?

Well, this is not an advanced solid state lecture course. And even there, you may not find all the answers easily. Some
answers I would have to look up, too; some, however, you can work out for yourself – at least sort of.
Of course, there is another question looming large by now: How is doping actually done – at least for the more common
non-Si semiconductors out there? What are particular problems and limits?

Again, answering these questions in any detail would far exceed what is possible to do during this lectures course.

We will, however, touch upon the subject in various and any places in the course of the following chapters.
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5.1.4 Wavelength Engineering

We will now try to find some answers to our fifth question: How can we change the wavelength of the light produced by
radiative recombination?

This question is to be understood in the sense of "changes beyond just choosing from given materials having
different band gaps".
The recipe coming to mind is: Mix two similar (direct) compound semiconductors with different bandgaps.

Luckily, most III-V compounds are completely miscible in ternary or even quaternary crystals.

In other words: From the 2 compounds GaAs and AlAs we can make ternary Ga1-xAlxAs for 0 ≤ x ≤ 1, from GaAs
and InP we can produce quaternary Ga1-xInxAs1-yPy.

This gives a lot of options. What happens upon mixing, which changes of properties are useful, and which are not? Are
there guidelines or do we have to try it out?

Generally, all properties of interest as given in a table in subchapter 5.1.1 will change while x and y run through the
accessible range, but not necessarily linearly (or even monotonously) with the composition.
Here we focus on just a few of the especially important properties:

Bandgap magnitude
Bandgap type (direct or indirect)
Lattice constant
Thermal expansion coefficient

The two last properties will be of overriding technical importance as soon as we learn how to make heterostructures,
i.e., combinations of two different semiconductors.

There are some standard diagrams showing major properties of the most important combinations.

The first and most important one shows the bandgap vs. the lattice constant plus information about the gap type. It
is shown below, with the II-VI compounds included for good measure:

Lattice Constant (Å)
 

There is a tremendous amount of information in this diagram (note that "X-gap" and "L-gap" both denote indirect band
gaps at the respective positions in the band diagram):

Most III-V compounds radiate at wavelengths above the visible region, i.e., in the infrared. However, adding some Al
to GaAs, producing AlxGa1-xAs, will shift the wavelength into the red region of the spectrum – here are our red
luminescence diodes and lasers!
Very fortunate: GaAs and AlAs have almost the same lattice constant; we can thus combine (e.g., in a stack of
layers) any mixtures of these materials without encountering mechanical stress.
Very unfortunate: There are no III-V compounds in the diagram that emit blue light – which is a severe problem for
many potential applications. While in the past, SiC could be used to some extent, it was only with the recent (early
1990s) advent of GaN that this problem was solved.
SiC and GaN crystals, however, are not of the "zinc-blende" type common to all the III-Vs in the diagram but have a
hexagonal unit cell. They therefore do not easily mix with the others! To grow GaN layers (bulk crystals can hardly
be produced!) it is therefore favorable to use a hexagonal substrate as, e.g., SiC, Al2O3 (sapphire), or Si(111), plus
a special buffer layer.
If we want to radiate at 1.3 µm or 1.5 µm – infrared wavelengths of prime importance for optical communications –
we should work with combinations of GaAs, InAs, and InP.
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Most interesting: The II-VI compounds are all direct semiconductors and span a much larger range of wavelengths
than the III-V's. The fact that they are not much used for products tells us that there must be big problems in
utilizing these compounds for mass products (prominent exception: thin-film PV modules made of CdTe).

Here is another picture of the same thing including more materials:

In the left part, all hexagonal materials are shown; for them, the value of the in-plane lattice constant (i.e., the one
perpendicular to the hexagonal axis) is used.
The group-III nitrides AlN, GaN, and InN span an extremely wide range of band gap energies, thereby providing a
plethora of design opportunities for devices. In the first two decades of the 21st century, there were a lot of activities
in this field, and the development still goes on.
The success in this field is mainly due to two basic achievements: First, to find out how stable p-type doping can be
reached; second, to find out how the materials can be grown with sufficient quality regarding high purity and low
defect density, especially dislocation density (that's one of the reasons the special buffer layer mentioned above is
needed for).
The first problem was overcome by Shuji Nakamura, the second one by him and by Isamu Akasaki and Hiroshi
Amano. Together, they received the 2014 Nobel prize in physics. The Nobel lecture given by Nakamura
("Background Story of the Invention of Efficient InGaN Blue-Light-Emitting Diodes") provides valuable insight into
present-day semiconductor research and device development.
Zinc oxide has already found many different applications, but only very few in the field of electronics. This is mainly
hampered by the same difficulty originally also faced for the nitrides: Stable p-type doping is still a problem.
Nevertheless, ZnO-related research and development in other fields of materials science is also very interesting;
see, e.g., the relevant activities in the group of Prof. Adelung here at the TF.
In addition, among the group-III nitrides there is also BN, showing some similarity to carbon: The most stable form
is graphitic boron nitride (i.e., covalently bonded hexagonal layers kept together by van der Waals forces),
whereas the cubic modification c-BN (having zinc-blende structure) is metastable, just like diamond. Graphitic BN
has a band gap of 5.2 eV, it is mainly used as a lubricant (c-BN: 6.4 eV, used as abrasive).

Let us now look a bit more closely at some other properties for the technically more relevant systems.

The following diagrams show the direct and indirect bandgap and the refractive index for Ga1-xAlxAs as a function of
x.

Mixing does not only affect the band gap and the lattice constant, but also the quantum efficiency of light production.
The next figure shows the mixture GaAs1-yP y.

The quantum efficiency decreases rapidly as the material approaches the indirect bandgap region.
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If an isoelectronic center – N in this case – is added, the GaP side obtains a strong radiative recombination channel
via bound excitons and the quantum efficiency is two orders of magnitude larger.

Next the lattice parameters of various mixtures as a function of x are shown.

This is easy to calculate; for complete mixing (no precipitation etc.), the lattice parameter changes linearly with the
composition index x between the values for x = 0 and x = 1.

Finally, the technically most important systems are listed together with some key properties:

We see that all kinds of ternary and quaternary compounds are used, and that the external or total efficiency – the
relation of light out to total power in – is relatively small in most cases. The external efficiency should not be
confused with the quantum efficiency (relation of light produced to total power minus ohmic losses), since some of
the light produced may never leave the device – remember the fourth question!
Also remember that the total efficiency of a light bulb is just a few percent. The semiconductor values don't look so
bad in this context, and that for GaAs we can get up to 30 % in extreme cases (and beyond!) is encouraging. From
that perspective, the blue emission efficiency of the group-III nitrides is beyond expectations. Note that the
somewhat exotic exciton process can account for an efficiency of 15 %!!

Material (Dopant) Wavelength
[nm] Transition

External
Efficiency

[% of
power]

Color

Al0.60Ga0.40N 265 band–band 2 - 10 UV

In0.16Ga0.84N 445 band–band 50 - 70 purple

SiC (Al, N) 480 defect-related
(stacking fault?) 0.01 - 0.05 blue

GaP (N) 565 exciton 0.1 - 0.7 green-
yellow

GaAs0.15 P0.85 (N) 590 exciton 0.1 - 0.3 yellow-
orange

GaAs0.3 P0.7 (N) 630 exciton 0.4 - 0.6 orange-
red
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red
GaAs0.6P0.4 650 band–band 0.2 - 0.5

Ga0.6Al0.4P (N) 650 band–band 1 - 3

GaP (ZnO) 690 exciton 4 - 15

GaAs 870 band–band 0.1

infrared

GaAs (Zn) 900 band–acceptor 0.5 - 2

GaAs (Si) 940 deep level 12 - 30

In0.73Ga0.27As0.58P0.42 1310 band–band 1 - 2

In0.58Ga0.42As0.9P0.1 1550 band–band  
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5.2 Light and Semiconductors

5.2.1 Total Efficiency of Light Generation

Contributions to the Total Efficiency

We will now give some thought to the second and third question raised before: How much light is produced by
recombination? This raises the question for the value of the quantum efficiency ηqu mentioned before, and the total or
external efficiency ηext in absolute terms (third question).

First we will define the quantum efficiency again (and somewhat more specifically) and relate it to some other
efficiencies.
The quantum efficiency ηqu is defined as

ηqu  = 
Number of photons generated in the recombination zone

Number of recombining carrier pairs in the recombination zone  

We already know that, it could be expressed as

ηqu  =
1

1  +   τ rad / τnon-rad

In the high injection approximation the number of carriers is about equal to the number of carriers injected (across a
junction) into the recombination zone.

That part of the total recombination occurring via a radiative channel determines the quantum efficiency. However,
the surplus carriers in the recombination zone have one more "channel", not considered so far, for disappearing from
the recombination zone: They simply move out!
In other words: parts of the injected carriers will simply flow across the recombination zone and leave it at "the other
end".

This effect can be described by the current efficiency ηcu; it is defined as

ηcu  = 
Number of recombining carrier pairs in the recombination zone

Number of carrier pairs injected into the recombination zone

We now define the optical efficiency ηopt as

ηopt  = 
Number of photons in the exterior

Number of photons generated in the recombination zone

The optical efficiency takes care of the (sad) fact that in most devices a large part of the photons generated become
reabsorbed or are otherwise lost and never leave the device.

The total or external efficiency ηext now simply is

η ext  =  ηopt · ηqu · ηcu

In other words: The external efficiency is limited because not all injected carriers recombine, not all recombinations
produce photons, and not all photons leave the material.

If we want to optimize the external efficiency, we must work on all three factors - none of them is negligible.

We already "know" how to optimize the quantum efficiency ηqu by looking at the equation above. We must look for
the best combination of materials producing radiation at the desired wavelength, and then dope it in such a way as
to maximize the radiative channel(s) by minimizing the corresponding lifetimes. While this is not easy to do in
practice, it is clear in principle.
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We do not yet know how to attack the two other problems: Maximized current efficiency and maximized optical
efficiency. And theses problems are far from being solved in a final, or just semi-final way - intense world-wide research
efforts center on new solutions to these problems.

While there are no general solutions to these problems and only some useful equations, a few general points can
still be made. We will do this in the remainder of this subchapter for the current efficiency and in a separate
subchapter for the optical efficiency.
 

Current Efficiency

The question to ask is: Why is the current efficiency not close to 1 in any case?

After all, if we consider a simple p–n junction biased in forward direction in a direct semiconductor (e.g., GaAs), we
inject electrons into the p-part and holes into the n-part, where they will become minority carriers. Some of the
injected carriers will recombine in the space charge region, all others eventually in the bulk region.
While the quantum efficiency may be different in the different regions, because the strength of the recombination
channels depends on the carrier density which is not constant across the junction, we still could assign some kind
of mean quantum efficiency to the diode so that ηcu = 1.
However, we defined the efficiencies relative to a "recombination zone ", i.e we are not interested in radiation
produced elsewhere for various reasons (to be discussed later). If we take the recombination zone to be identical to
the SCR, only that part of the injected carriers that recombines in the SCR will contribute.
This is exactly that part of the forward current that we had to introduce to account for real I-V-characteristics of p–n
junctions – cf. the simple and advanced version in the relevant modules.
That part of the current that injects the carriers which recombine in the SCR was given by

jrec (SCR)  =  
e · ni · d

2τ 

  · exp 
e · U

2kT

d was the width of the SCR.

The current efficiency in this case would then be given by

ηcu  =  
jrec

jdiode

 =  
jrec

jnon-rec  +  jrec
     
     

 
 =   

1

1 +  
jnon–rec

jrec

With j non-rec (assuming that the electron and hole contributions and parameters are equal) given by the "simple" diode
equation as

jnon-rec  = 
2 · e · L · ni2

τ · NDop

 · 




exp  
e · U

kT
  – 1





we obtain for ηcu (neglecting the –1 after the exponential)
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ηcu  =    

1

1  +  
4 · L · ni

d · NDop

  · exp  
eU

2kT

ηcu thus decreases exponentially with the applied voltage and it would not make sense to include this effect in
some averaged ηqu.

Why are we looking at radiation only from some confined part of the device, i.e., from the recombination zone , and not
at the total volume, which demanded a finer look at the efficiencies? There are practical reasons, e.g.:

If we consider a semiconductor Laser , only the radiation inside the "resonator" counts – everything outside of this
specific recombination volume is of little interest.
If we look at a light emitting diode – a LED – made of GaP doped with N (in addition to the normal doping) to
produce the isolectronic impurities needed to bind the excitons responsible for the radiative recombination channel,
it only radiates from the p-side because only electrons become primarily bound to the isoelectronic impurity and
then attract a hole. In other words, only the electron part of the injected current will contribute to radiation.
We must confine light production to areas close to the surface as shown in the next subchapter.

Looking ahead we will learn that many optoelectronic devices are extremely complicated heterostructures which, for
several reasons, need a precise definition of the recombination volume.
To optimize the current efficiency then obviously means to maximize the flow of carriers into this volume, and
minimize the flow out of it.
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5.2.2 Absorption and Emission of Light

Absorption of Light in Semiconductors

The optical efficiency ηopt is easy to understand by looking a the mechanisms that prevent photons from leaving the
device. We have two basic mechanisms:

1. The photon is absorbed before arriving at a (possibly internal) surface of the device.

2. The photon makes it to the (internal) surface of the device, but is reflected back into the interior and then
absorbed.

We thus have to worry about absorption of light in semiconductors in general and about reflections at surfaces.

The first topic is a science in itself. Here we only note a few of the major points:

In direct analogy to the various modes of radiative recombination, we have the reverse process, too: A photon
creates an electron hole pair occupying some levels (including, e.g. exciton levels).
All the conservation laws must be obeyed; phonons or other third particles (in the general sense; some defects
might come in handy here) may have to assist the process.
The dominating absorption process usually is the direct band–band process, i.e., straight up in a (reduced) band
diagram from an (occupied) position in the valence band to an (unoccupied) position in the conduction band. (For
indirect semiconductors this requires a larger energy than the band gap!)

The band–band absorption process is also called the fundamental absorption process, it is described
phenomenologically by Beer's law:

The intensity I of the light at a depth z in the semiconductor, I ( z ), is given by

I ( z )  =  I0 · exp (– α · z)

With I0 = intensity at z = 0 and α = absorption coefficient of the material.

It is clear that α = α(hν) is a strong function of the energy hν of the photons:

For hν < Eg(direct), no electron–hole pairs can be created, the material is transparent and α is small.

For hν ≥ Eg(direct), absorption should be strong.

All mechanisms other than the fundamental absorption may add complications (e.g. "sub band gap absorption"
through excitons), but usually are not very pronounced.
The absorption coefficients of major semiconductors indeed follow this predictions as can be seen in the following
diagram:

As expected, the absorption coefficient changes by 4 ... 5 orders of magnitude around the band edge energy, and in
direct semiconductors this change is "harder" than in indirect semiconductors.
Note that the absorption edge of Ge shows the features of both an indirect and a direct transition, the latter one
occurring only slightly higher in energy than the former. This is fully consistent with the band structure of germanium
(cf., e.g., here).

There are many more points to the absorption of light in semiconductors, but we will not pursue the issue further at this
point.
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The optical efficiency ηopt
  

If we now look at an LED, we notice that light with wavelengths corresponding to the absorption edge thus will be
absorbed within a few µm of the material – and that automatically applies to the light emitted by radiative recombination
.

If we look at a naive cross section of a light emitting diode (on the left), we see that only light from the edges of the
p–n junction has a chance to make it to the surface of the device. Obviously, this is not a good solution for a large
optical efficiency.

If we make a junction more like in an integrated Si circuit (above right), the situation is somewhat improved, but it
might be difficult to drive high currents in the central region of the device, far away from the contacts.
We might be better off in choosing an n-type material with a larger bandgap than the p-type material and see to it
that light is generated in the p-type material. Its photon energy then would be too small for absorption in the large
bandgap material and it could escape without absorption. In other words: We utilize a heterojunction (see below for
details).

This sequence demonstrates several important points about the realization of LEDs:

1. A large optical efficiency is not easy to achieve. Generally, much of the light produced will never leave the device.

2. The typical structures from Si integrated circuit technology may or may not be useful for optoelectronic
applications. In general, we have to develop new approaches.
3. We always should try to produce the light close to the (possibly internal) surface of the active material. In other
words, we need a defined recombination zone that is not deep in the bulk of the active material.
4. Heterostructures – meaning the combination of different semiconductors – come up quickly in optoelectronics
(while virtually unknown in Si technology – except for high-efficiency solar cells).

Next, let's assume that the photons make it to the surface of the device. The question now is if they are reflected back
into the interior or if they can escape to the outside world.

This is a question that can be answered by basic optics. The relevant quantities are shown in the next picture.

For the light beams coming from the interior of the semiconductor to the interface (air in the picture; more generally
a medium with a refractive index n2), Snellius' law is valid:

n1 · sin Θ1  = n2 · sin Θ2

With n1 = index of refraction of the semiconductor, n2 = index of refraction of the outside (= 1 if it is air).

Since relevant semiconductors have rather large refractive indexes (simply given by the square root of the dielectric
constant), refraction is quite severe.

As soon as Θ2 reaches 90°, light will be reflected back into the semiconductor; this happen for all angles Θ1 larger
than Θcrit, the critical angle for total reflection, which is obviously given by

Θcrit  = arcsin 
n2

n1
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For typical refractive indices of 3.5 (or dielectric constants εr = 12.25), we have Θcrit = 17°. This is a severe
limitation of ηopt: Assuming that radiation is produced isotropically, a cone of 17° contains only about 2% of the
radiation!

But the situation is even worse because photons within the critical angle may still become reflected – the probability is <
1, but not zero.

For the transmissivity T, the fraction of light that does not get reflected, the following relation (a variant of the general
Fresnel laws of optics) holds:

T  =  1  – 




n1 · cosΘ 1  –  n2 · cosΘ2

n1 · cosΘ1  +  n2 · cosΘ2





2

= 1  –  R

With R = reflectivity = {intensity of reflected beam} / {intensity of incoming beam}.

This can be simplified to an expression for the total fraction of light leaving the semiconductor:

Ttotal  ≈ 
4 · n1 · n2

(n1  + n2)2

For n1 ≈ 3.5 and n2 = 1 (air) we have Ttotal = 0.69, so only about 2/3 of the radiation contained within the critical
angle leaves the semiconductor.

The total optical efficiency of LEDs with isotropic generation of radiation thus is in the 1% region – something we must
worry about!

The simplest solution is to "grade " the refractive index, i.e. to lower it in steps. This is most easily achieved with a
"drop" of epoxy or some other polymer. How this method of index grading works becomes clear from the drawing:

Two light rays at the edge of some aperture have been traced; the relevant angles are shown as pink triangles for
the red light beam. The critical angle for total reflection at both interfaces is now considerably larger. Note that the
angle in the lower index medium is always larger and that this leads to a certain, not necessarily isotropic radiation
characteristics of the system.
The polymer layer, in other words, acts as an optical system – and by giving it specific shapes we can influence the
radiation characteristics to some extent.

In total, we see that getting the light out of the device (and having it more or less focussed or otherwise influenced in its
directional characteristics), is a major part of optoelectronic technology.

In fact, a totally new field of research with some bearing to these problems has recently be opened by the (first
theoretical, and then experimental) "discovery" of so-called photonic crystals – activate the link for some details.
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5.3 Heterojunctions

5.3.1 Ideal Heterojunctions

General Remarks

Optoelectronics, as well as practically all other devices made of compound semiconductors, always contain
heterojunctions, i.e., junctions between two different semiconductors, for a variety of reasons.

One possible reason was already mentioned: Transparency to light generated in some active part.

But there are many other advantages so compelling that extremely complicated heterostructures are now routinely
produced despite a lot of problems that are encountered, too.
Below, the conduction band structure of an advanced AlxGa 1-xAs device is shown to illustrate that point. The
doping is shown in brackets; "i" means undoped (= intrinsic). SQW is short for "Single Quantum Well" – whatever
that may be.
There are many different heterojunctions, so we will not be able to delve very deep into the subject. The logic behind
this structure will be made clear in a later chapter.

In this sub-chapter we will look at some major properties of heterojunctions. First of all: How do we construct a band
diagram?

Let's first look at the basic cases that we may encounter when considering heterojunctions. Naturally, the bandgaps
are always different, but only specifying Eg(1) and Eg(2) [and of course the Fermi energy in (1) and (2)] is not
sufficient to describe the heterosystem before the contact of the materials (1) and (2).
We also must specify the exact position on the energy scale of one of the band edges. This then gives rise to three
distinct cases for heterojunctions as illustrated below together with the necessary definitions of the various energies
needed.
You may want to consult a special module (in German) dealing with some of the questions that may come up.

Looking at the left hand case (Type I), we first discuss the various energies encountered:

In contrast to "simple" band diagrams in Si, the vacuum energy level is now included (and defines the zero point of
the energy axis). We also have the energy of the band edges, EC and EV, and from their difference the bandgap
energy Eg.
By convention, the difference between the conduction band edge and the vacuum energy is defined as a potential
called "electron affinity χ"; q · χ is thus the work needed to move a charge from the (lower) conduction band edge
to infinity.
Note that this is not exactly the same as the electron affinity in more chemical oriented lingo, where it is the energy
gained by the reaction X + e– = X– and thus only defined by atoms that form stable negatively charged ions.
The difference between the Fermi energy and the vacuum energy is given by charge times the workfunction Θ of
the material, q · Θ is thus the energy needed to move a fictitious electron (because in semiconductors usually there
is none at the Fermi energy) from the Fermi energy to infinity.
Note that while χ is a material constant, Θ is not – it changes with the position of the Fermi energy.

We may also define the differences of the band edges between the two materials, ∆E C and ∆EV, although they are
implicitly given by the prime material parameters χ and E g = EC – EV.
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The three types of heterojunctions possible are:

Type I (straddling): The bandgap of one semiconductor is completely contained in the bandgap of the other one;
i.e. EC(2) > EV(1) and EV(2) < EV(1). The discontinuities of the bands are such that both types of carriers, electrons
and holes, need energy (∆EC and ∆EV, resp.) to change from the material with the smaller band gap to the one with
the larger gap – the carriers from the other side loose this energy when they cross the junction. Type I
heterojunctions are quite common, the important GaAs/AlGaAs system belongs to this kind.
Type II (staggered): The bandgaps overlap, but one ∆EC or V changes sign. The situation with respect to moving
carriers from (1) to (2) or vice verse is no longer symmetrical. One kind of carrier gains energy (in the example if
electrons move from right to left), the other one needs energy (the holes). The InP/InSb system provides an
example.
Type III (broken-gap): The bandgaps do not overlap at all. The situation for carrier transfer is like type II, just more
pronounced. The system GaSb/InAs belongs to this type.
 

Construction of Band Diagrams
  

What happens if we join the two materials? Exactly the same thing as for differently doped Si:

Carriers will flow across the junction, building space charges (and now possibly also interface charges) until the
Fermi energy is the same everywhere in the material. Far away from the junction, everything is unchanged.
However, there are pronounced differences to the case of a p–n junction in Si. Let's imagine symmetrical junctions,
i.e. the majority carrier density is identical in the p- and n-part. For homojunctions , the number of electrons flowing
into the p-type part is then the same as the number of electrons flowing into the n-part. However, at least in the type
I case, only one kind of carrier will flow as is obvious and shown below. The space charge regions to the left and
right of the junction thus might not be symmetric.

Still, some kind of carrier transfer will happen and the electrostatic potential far away from the junction will rise from
a constant level on one side to a different, but constant level on the other side. The difference will be equal to the
difference in Fermi energy before the contact divided by the elementary charge. To the left and the right of the
junction the bands are bend accordingly, and so is the vacuum energy.

Let's see how far this recipe takes us with a simple GaAs–AlGaAs type I junction:

First, we align the Fermi energies. Then, we bend the bands – in a smaller region on the more heavily doped side,
but always identical for both band edges! After all, the vacuum potential at some position x is fixed and so are the
band edges relative to the vacuum potential.

This leaves us with something new: We cannot join the bands of the two materials! If we adjust the band bending on
both sides so that the conduction bands match, the valence band won't match and vice verse. We must introduce a
discontinuity right at the interface at one of the bands – or at both.

The next picture shows how to do that for type I heterojunctions for both possible doping cases.
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Some kind of cusp or notch must form in the conduction or valence band, depending on the details of the system.
Exactly what happens and what the cusps look like depends on many details, you must solve the Poisson equation
properly for a specific case.
Again, a discontinuity like this must happen, even at "ideal" interfaces. We don't know exactly what it looks like, but
we can now take this potential and plug it into a one-dimensional Poisson equations and see what it means for the
charge distribution.
Unavoidably, there must be a dipole layer right at the interface (look at this basic module if you have problems
figuring that out). The distance between the charges of this dipole layer is so small, however (atomic size) that it
does not influence the carrier movement (there is an acceleration/de-acceleration process with equal magnitudes at
a very small scale in classical terms or effortless tunneling in quantum-mechanical terms).
This dipole layer with its sharp wiggle in the charge distribution is therefore usually not included in drawings of the
heterojunction.

In reality, the matching of two lattice types with different atoms on both sides may well introduce some interface states
in the bandgap, as discussed for the free Si surface.

Depending on the Fermi energy (which is of course influenced by the interface states, too), these interface states
may be charged and introduce some band bending of their own.

To make things even more complicated (for pessimists), or to add more possibilities for engineering with heterojunction
(for optimists), we now can produce junctions with specific properties between materials of the same doping type – even
for identical carrier densities.

This type of heterojunction is sometimes called an isotype junction , the p–n type a diode-type junction. Some
people use abbreviations, with upper case letters indicating the doping type of the material with the wider bandgap
and lower case letters the other one. We then have Pn, pN, Np, and nP junctions of the diode type, and Nn, nN,
Pp, and pP junctions of the isotype. If we look ahead, we can now easily denote multi-junctions like PnP, and so
on.
Also isotype junctions have band discontinuities at the interface, and also here the cusp is where the Fermi energy
is; the next picture shows examples.

You may already wonder what properties to expect from this kind of junction and what it is good for; we will discuss
that later.

We now have a degree of freedom for all heterojunctions, which did not occur for homojunctions: How do we distribute
the discontinuity?

In the left hand diagrams above, e.g., we could decrease ∆EC and increase ∆EV by an identical amount, making
the cusp more pronounced; or we do it the other way around. How can we find the real case?
The answer is: Nobody knows how to do that in some kind of comprehensive theory. The simplest model (called the
Anderson model) assumes that ∆EC is equal to the difference in the electron affinities χ:

∆EC  = q · [χ(2)  –  χ(1)]

But that is only a rough estimate that may be quite wrong – not to mention that bulk electron affinities cannot be
calculated with any precision, and measurements always obtain the (systematically different) surface electron
affinities.

There is, however, one feature of the discontinuities that makes life somewhat easier: Whatever its value, it is
determined by the interaction of the atoms at the interface and interatomic forces are responsible for its value.

This simply means that its value does not change much if we change properties of the materials on a scale much
larger than the atomic scale. In other words:
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The band bending necessary for adjusting the potentials on both sides of the junction, so that the Fermi energy is
identical, may be seen as independent of the value of the discontinuities. If we construct a band diagram, we simply
always keep the same value for the discontinuities (as determined from using the vacuum level as reference for the
separate bulk materials), no matter what else we do with the bands.
 

Properties of Heterojunctions
  

How do we measure the values of the discontinuities? The answer is: Make the heterojunction and measure the junction
properties.

In order to do that, we need to know how the discontinuities influence measurable quantities. How, for example,
does the precise nature of the discontinuities influence the current–voltage characteristic of a heterojunction? Or, if
there is some radiative recombination, the quantum- or current efficiencies?
We are now entering deep water. Or are we? After all, the equations for I–V characteristics of a junction (without the
space charge layer part) in the simple or more complex form did not contain anything about the shape of the band
bending – only the potential difference and bulk properties of materials to the left and right of the junction.
This tells us that the basic diode characteristics (assuming that nothing happens in the space charge region) must
still be valid in its general form, but with one big difference that transfers into a decisive property of heterojunctions:
The hole and electron part of the total current now are different even for a perfectly symmetric junction!

This is most easily seen if we look at the relation between the two partial currents je and jh, called the injection ratio κ
= je / jh . Taking the expressions from the simple diode equation given before, we obtain

κ  = 
je

jh
 = 

e · nep · De / Le

e · nhn · Dh / Lh

Rewriting this in terms of the carrier mobilities and the doping densities (assuming fully ionized dopants) with the
relations given before, we obtain

κ  =  
[μe · ni 2 / (Le · NA)] p-side

[μh · ni2 / (Lh · ND)] n-side

For homojunctions, the intrinsic carrier density ni is the same on both sides, but not for heterojunctions! For the
intrinsic carrier densities of any semiconductor we have the basic equations:

nei  = Neeff · exp




– 
EC – EFi

kT





  

      

nhi  = Nheff · exp




– 
EFi – EV

kT





 = nei

With EFi = Fermi energy for the intrinsic case.

Only for the case that N e eff  =  N heff   would the Fermi energy be in the middle of the band gap; and while we always
used that approximation for Si, we must be more careful with compound semiconductors.

But independent of the exact position of the Fermi energy, for total equilibrium we always have

ni 2  = ne i · nhi = N eeff · Nheff · exp




– 
EC – EV

kT





Inserting this relation into the equation for the injection ratio κ from above, introducing the difference of the band
gaps of material 1 and material 2 as ∆Eg = Eg(1) – Eg(2), and substituting "1" and "2" for "n-side" and "p-side"
(because this relation is valid for any heterojunction of the diode type), we obtain for κ:
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κ  =  
[ μe · Neff e · Neffh / (Le · NA )]1

[ μh · Neffe · Neffh / (Lh · ND)]2
 · exp





– 
∆Eg

kT





This is a very important equation for optoelectronics. Let's see why:

If ∆Eg is sufficiently large – and since it is in an exponential term, it does not have to be very large – it will always
overwhelm the possible asymmetries in the pre-exponential term, e.g. because of different doping levels, or effective
density of states between the two materials, and this means κ = je / jh is very different from 1. Getting all signs
right, we have the following situation:

Junction type ∆Eg exp [–∆ Eg/(kT)] κ

Pn >0 small small

pN <0 large large

In other words: In heterojunctions of the diode type, injection of the majority carriers from the material with the larger
band gap (almost) always far surpasses the reverse process.
To give a relevant example: For a GaAs/Ga0.7Al0.3 As junction with ∆Eg = 0.3 eV and for doping densities of 1018

cm–3 or 2 · 1017 cm–3, respectively, we have κ ≈ 106.
Why is a large value of κ so important?

Because if we sandwich a small gap semiconductor between two large gap semiconductors, we should be able to
inject a lot of electrons from one side and a lot of holes from the other side – with no means of escape. The injected
carriers must recombine in the small gap part, which thus is our recombination zone – we have a large current
efficiency ηcu.
If you think about that a minute and try to come up with some structure, you will realize that there is a problem: You
cannot have injection via two p–n junctions – one junction must be an isotype junction. But luckily, isotype
junctions have similar properties: it is easy to inject majority carriers from the wide band gap side and not so easy
from the other side.
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5.3.2 Isotype Junctions, Modulation Doping, and Quantum Effects

Isotype Junctions

Let's look at the band diagrams of an isotype heterojunction in equilibrium; we chose a somewhat extreme case:

Electrons were transferred form the (heavily n-doped) wide-gap material 1 to the (lightly n-doped; almost intrinsic)
small gap material 2. Space charge regions form; on the left hand side by positively charged ionized dopant atoms;
on the right hand side by the increased electron density.
In other words: In the low gap semiconductor we have carrier accumulation like in Si MOS devices.

What happens if we apply a bias U?

Well, draw the band diagrams. Move one side up by e · U, and make sure that the band discontinuities do not
change. What you get for the structure from above is shown below.

The current is always carried by majority carriers (electrons in our case). Inspecting the (exaggerated) drawings, it is
clear that this is relatively easy from left to right, but not from right to left. Without going into the details of the
characteristics, there are several novel features emerging with possible uses for devices. The first one of these effects is
clear; the following ones need consideration:

1. We may use an isotype heterojunction to inject majority carriers from the wide band gap material into the small
band gap material as in the case of diode-type junction.
2. We may use an isotype heterojunction to spatially separate the carriers generated by doping in the wide band
gap material from the doped region.
3. We might have peculiar new quantum effects.

While the first point is relatively clear, including its usability for light emitting devices (again, try to figure this out
yourself), the second and third point need some explaining.
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Modulation Doping
  

Let's look at the isotype junction in equilibrium again to understand the second point.

What happened is essentially that the electrons missing in the space charge region on the left hand side were
transferred to the potential dip on the right hand side. Of course, electrons are also running down the slope from the
right, but the essential contribution is from the wide band gap material on the left (which, after all, is the cause for
the dip).
Since we picked a highly doped material 1 and a lightly doped material 2, we now have a lot of electrons (their
density is essentially given by the doping in material 1) in a crystal with few ionized dopant atoms.
And what this means is that we now have a high density of highly mobile electrons, because the mobility at high
doping density is always severely decreased by scattering at the ionized dopants – cf. the paragraph to this topic.
This effect is most pronounced at low temperatures and can lead to a mobility enhancement of an order of
magnitude or even more.
This is not only generally useful, but can be carried to extremes. All we have to do is to make sandwiches as shown
below.

With properly chosen dimensions, deep potential wells will form in the low band gap material that contain most of
the electrons from the highly doped wide band gap material. This amounts to a novel way of effectively doping
material 2, called modulation doping.

If the potential wells are small enough (which is usually the case), the confinement of the electrons in the wells leads to
pronounced quantum effects – we therefore call these potential wells "quantum wells" (QW) and distinguish single
quantum wells (SQW) and multiple quantum wells (MQW).

An SQW is obtained by sandwiching just one small gap semiconductor, a MQW as shown above. The introductory
picture of the heterojunction subchapter showed examples of both types.
We may even improve on that by inserting a very thin layer (1 . . . 10 nm, say) of intrinsic material of a suitable
band gap between the two basic materials. If properly done, this layer, while not impeding carrier flow into the
potential wells for equilibration, keeps the carriers from being scattered at the interface and thus increases the
mobility even more.

But with that we have not yet exhausted the possibilities of heterojunctions – we will now turn to special quantum
effects.
 

Quantum Confinement Effects
  

Let's consider the peculiar quantum effects in modulation doped structures by looking at some typical dimensions.

The width of the various space charge layers must still be given by formulas not too different from the ones we had
for Si. For a GaAlAs/GaAs system with a high doping around 1018 cm–3 in the wide band gap GaAlAs side, the
width of the dips with the high electron density on the GaAs side is about 5 ... 10 nm, while the lateral extension is
large by comparison.
The mean free path length of the (highly mobile) electrons is larger than the thickness of the potential dip (better
called potential well for the multi-junction configuration shown above) and this means that we now have essentially a
two-dimensional electron gas.

What does that mean? Especially if we make the thickness of the layers extremely thin?

It means that we have a periodic crystal in two dimensions (x and y) and a one-dimensional potential well in the z-
direction, which is always the direction used in the pictures above.
The relevant Schrödinger equation is easy to write down, especially in the free electron approximation with a
constant potential (= 0) in x- and y-, and a potential V(z) in z-direction:

 – 

2

2





1  

mx*
  · 

∂ 2

∂x2
 + 

1  

my*
 ·  

∂2

∂y2
 + 

1  

mz*
 · 

∂2

∂z2





ψ(r)  –  e · V(z) · ψ(r)  =  E · ψ (r)

This equation is solved by

Semiconductors - Script - Page 155

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_2/basics/b2_1_4.html#mean free path


ψ(r)  = ψvert(z) · ψlateral(x,y)

The two functions ψ lateral(x,y) and ψvert(z) are decoupled, the solutions can be obtained separately. For the
lateral part we simple have

ψ lateral(x,y)  = Solutions of the two-dimensional
free electron gas problem

The vertical part of the solution comes frome solving the remaining one-dimensional Schrödinger equation





 – 

2

2mz*
 · 

∂2

∂ z2
 –  e · V(z)





ψvert (z)  =  Evert · ψvert(z)

It is rather clear that the structure of the two-dimensional problem will not be much different from that of the common
three dimenional problem if we introduce a periodic potential in (x,y). We simply obtain Bloch waves in two dimensions
instead of plane waves for ψ lateral(x,y). The energy eigenvalues are unchanged, too, they were for the free electron gas
(using the effective masses by now).

Elateral  = 

2k2lat

2m*lat

The solution of the one-dimensional problem in z-direction depends of course on the precise shape of V(z), but as a
general feature of potential wells we must expect a sequence of discrete energy levels. For the most simple case of
a rectangular well (with infinite height), standard calculations show that

Evert  = 
( π)2

2mz*
 · 

j 2

dz2

With j = 1, 2, 3, ... = quantum number, and dz = thickness of the potential well.

The total energy of an electron is now given by

Etotal  = Elat  + Evert  

Etotal  = 
( klat)2

2m*lat

 + 
( π)2

2m*z  
 · 

j 2

dz2

This "simply" means that the states in the conduction bands are now a discrete series given by the quantum
number j with a density of states per level of

Dlat  = 
 · m*lat

2π
 =  constant

If you like to try your hand at a little math: The formula for Dlat is rather easy to obtain if you follow the recipe for the
three-dimensional DOS for this case.

What do we get from this? Well, a lot of special effects for enthusiastic solid state physicists, but also some (not
necessarily big) advantages for devices. However.....

Each quantum well layer is now something like a one-dimensional atom – in contrast to the three-dimensional real
atoms were the wave functions of the electrons were confined in all three directions. If we move these "atoms" close
together in the z-direction, there must be a point where the wavefunctions in z-direction (the ψvert(z)) start to
overlap and do all the things real atoms do at close distance.
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The energy levels change and split, and – in analogy to a crystal formed by real atoms – a one-dimensional energy
band may start to develop with an energy range that is given by the geometry of the system, i.e., the thickness of
the layers, for a multi quantum well structure.

This is a momentous statement! Think about it!

It means that we can make materials with energetic properties that we can tailor at will (within bonds and limits, of
course). We no longer must just live with bandgaps and other properties that mother nature provides, we now can make
our own systems. At least in principle.

Something like that we call a metamaterial.

Multiple and single quantum wells are already part of recent devices as shown in the last module of this chapter.

 

Semiconductors - Script - Page 157



5.3.3 Real Heterojunctions

Misfit Dislocations and Critical Thickness

So far we considered ideal heterojunctions. What do we mean with ideal? You can look at it in two ways

The junction is structurally ideal, i.e. you just switch from one set of atoms on one side of the junction to another set
on the other side. For that you need the same type of crystal lattice and identical, or at least very similar lattice
constant, of course.
The junction is electronically ideal, i.e. the interface does not have any interface states in the band gap (in analogy
to the case of a free surface treated before) or is otherwise interfering with carrier densities and transport.

But even for these ideal conditions we have an energy discontinuity at the interface with a charged dipole layer if the
badgap energies are different. What happens for real interfaces, the only ones we can actually make?

Real interfaces have one thing in common: The lattice constants of the two materials joined at the interface are
never precisely identical. And from this fact of life evolve many problems – and many ingenious technologies to
avoid those problems.
The basic problem is the same for all heterojunctions. The lattice misfit between the two crystal may cause the
incorporation of a network of so-called misfit dislocations into the interface. And this misfit dislocation network is
the source of practically all evil in heterojunctions – if you have it, your device will not work at all, will work only
badly, or fail after some (too short) time.
Compared to the "high physics" part of the electronic and quantum properties of heterojunctions, this looks like a
mundane problem. Well, it is – but it is here where most grandiose ideas for stunning devices go down the drain. If
you can not make the junction, you won't get far with your device.

If you are especially interested in this topic, or if you only have a very dim perception of lattice defects in general and
dislocations in particular, you should now turn to the hyperscript "Defects in Crystals" either in general, or to the
chapters "Dislocations" or "Phase boundaries" in particular; here we only will deal with the very basics of misfit
dislocations.

The following figure shows what misfit dislocations are and why they are formed.

If you just geometrically juxtapose two crystals, you will have a situation as shown in the upper part for a misfit of 5%.

Only every 20th lattice point will precisely match between the two lattices (at so-called coincidence sites). In
between, the situation does not only look highly instable, but really is unstable. If there is any appreciable
interaction between the atoms of lattice 1 and lattice 2, something will happen and that is almost always the case
(mother nature, of course, does provide some exotic crystals with "geometric" interfaces as the exception).
Other weird solutions are conceivable, e.g. an amorphous layer between the two crystals, some highly disordered
region formed by a mixture of the two lattices – you name it. While all of this does happen on occasion, it is not the
rule; certainly not for "normal" semiconductors.

Eschewing "geometric" and "weird" interfaces, there are only two reasonable options left:

1. The lattices are elastically squeezed or expanded until they fit precisely. The amount of energy contained in the
necessary elastic distortions is directly proportional to the volume of the deformed material; for the one-dimensional
structures we are usually envisioning, the energy scales with the thickness of the layers.
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2. Misfit dislocations are introduced as shown above. This means that all the misfit is concentrated in a small
volume around the dislocations, while in between we have a perfect fit with only a little elastic distortion. The total
energy contained in the distortion around the dislocations is rather large, but does not depend much on the volume
(resp. thickness) of the crystals.

As a simple and sad consequence we then have the following basic fact of life:

For layer thicknesses larger than some system-dependent critical thickness dcrit, the introduction of a misfit
dislocation network is always energetically favorable.
Deriving a formula for the critical thickness is not without problems and some material specific idiosyncrasies, but in
general we have

dcrit  =  
b

8 · π · f · (1  +  ν )
  · ln

 e · dcrit

r0

With b = Burgers vector of the dislocations; usually somewhat smaller than a lattice constant, f = misfit parameter
= (a1 – a2)/a1, ν = Poisson ration ≈ 0.4,
e = base of natural logarithms = 2.718..., r0 = inner core radius of the dislocation; again in the order of lattice
constant.

Getting precise values of dcrit is such not easy (not to mention that the equation above has no analytical solution); but
for a crude approximation that can be used for "normal" cases we simply have

dcrit  = 
b

10 · f

More about that can be found in an advanced module.

If, for example, we look at the system GaAs/InAs , we have lattice constants of  0.565 and  0.606 nm, so f = 0.0726
(i.e. the misfit is 7.2 %). The Burgers vectors in these crystals are usually a /(21/2) ≈ 0.42nm, which gives us a critical
layer thickness of dcrit = 0.58 nm – less than 2 crystal layers. 1)

Shit (really)! This looks not so good – and in fact, nobody uses the GaAs/InAs system for heterojunctions. But we
have better couples, especially mother natures gift to optoelectronics, the GaAs/AlAs system and the InAs/GaSb/
AlSb system where the misfit parameters are much smaller.
If we go through the numbers for GaAs/AlAs with 0.5653/0.5660, we obtain d crit = 57 nm – a value sufficient for
many applications.

While this is nice, we must of course ask ourselves if there are ways to beat the dcrit equation, i.e., to produce layers
with a thickness larger than the critical thickness. This is indeed the case and we will look at some of the methods to
produce dislocation free heterojunctions despite the energetic limitations. More about misfit dislocations (and other
problems in heterojunctions) can be found in an advanced module.
 

Extending the Critical Thickness
  

There are some ways to beat the critical thickness to a smaller or larger extent; we will just give them a cursory glance
which will not do justice to the sweat and toil as well as hard thinking that went into this problem.
First , do not believe the theory and give up because it looks bad.

Even the full equation from above does not take all parameters into account. The situation may be better (or worse)
than the numbers you obtain.
Try it experimentally, at least as the layer thickness you need is not too far (at least a factor 3 or more) above the
theoretical limit. You might be lucky!
However, don't try for really large misfits above, say, 2 %. Not only is the critical thickness small, but you probably
will not even be able to obtain a smooth layer – islands will grow!

Second, consider the kinetics of the layer deposition process.

Any formula for dcrit (including much more advanced treatments) is an equilibrium formula, comparing enthalpies in
equilibrium.
However, since your layer thickness always is below dcrit at the beginning of the deposition process, there are no
misfit dislocations in the beginning of the deposition. After the critical thickness is reached, dislocations must be
nucleated and move from the surface to the interface and this is a kinetic process which you may be able to
impede.
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In other words, for optimized conditions, you may obtain dislocation free interfaces for kinetic reasons. In particular,
make the nucleation of dislocations difficult by avoiding all irregularities (including temperature gradients) that may
serve as nuclei.

Third, minimize the elastic strain energy by using a buffer layer.

This is maybe the most important trick; especially if you want to produce many junctions for multiple quantum
wells.
Lets look, e.g., at a MQW sequence consisting of the substrate material (yellow) and a material with a larger lattice
constant (blue) very schematically before the "joining" of the crystals. Keep in mind that the substrate, being very
thick, never "gives" – only the layers will be strained!
Even if the first blue layer is below the critical thickness, the stress will build up, and after a few layers you have
misfit dislocations for sure (left part of the figure).
The break-through came with the introduction of a buffer layer in which the lattice constant is gradually changed (by
gradually changing the composition) to a value halfway in between material 1 and material 2. This is shown in the
right part of the figure. The effect is that while the stress in the layers is about the same as before, it does not build
up anymore with the number of layers if everything is done just right – multiple quantum wells are possible!

In reality, the buffer layer is much thicker so it cannot be strained very much as shown.

Buffer layers of some mysterious kind, it seems, also finally helped to obtain the holy grail of heteroepitaxy: Growing
GaAs on Si without misfit dislocations.

Not an easy task, if you consider that the misfit is about 4.1 %. Still, Motorola appears to have solved the problem,
if you can believe newspaper articles. The "appears" relates to what you actually read in one of Germanys finest
daily; the article is contained in the link – click on it and try if you can make some sense out of it (provided you
understand German). Otherwise try this link.

Fourth, accept the misfit dislocations, but put them in a part of the system where they do no harm.

This approach is known under the heading "compliant substrates". The basic idea is simple (and illustrated in an
advanced module): Make a bicrystal (usually of Si) by bonding two wafers together with a defined twist of up to 15°
along the axis perpendicular to the wafer. A grain boundary ("small-angle twist boundary") must form, consisting of a
dense array of screw dislocations.
Now polish off one of the Si wafers until only a thin layer (1 µm or less) remains. This does not only sound difficult
to do, it really is – but nevertheless it can be done in a large scale production. The remaining sandwich, thick Si /
grain boundary / thin Si, is your compliant substrate.
If you now deposit a layer of anything on thin Si layer, any misfit (up to very large amounts) between the thin Si
layer and the deposited layer of the other material will be accommodated by the dislocations in the grain boundary –
there is no need to form new ones.
The important interface thus remains dislocation free and you may now be able to do things not possible so far.

 
__________________________

1) Note that in contrast to the elemental diamond lattice, where the smallest possible Burgers vector for a perfect
dislocation is belem = a/(2 · 21/2), we have bcomp = a/(21/2 ) because we would otherwise replace A-atoms by B-
atoms in the glide plane of the dislocations (look at the Volterra "cut and paste" definition of a dislocation in the
"Defects in Crystals" hyperscript).
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5.4 Quantum Devices

5.4.1 Single and Multiple Quantum Wells

Energy Levels in a Single Quantum Well

Let's first look at an ideal single quantum well (SQW), rectangular and with an extension dz and infinite walls (the
index "z" serves to remind us that we always have a three-dimensional system with the one-dimensional quantum
structures along the z-axis).

We have already solved the Schrödinger equation for this problem: It is nothing else but the one-dimensional free
electron gas with dz instead of the length L of the crystal used before.
We thus can take over the solutions for the energy levels; but being much wiser now, we use the effective mass
instead of the real mass for the electrons and obtain

E  = 
(  · kz)2

2mz*

With kz = ± nz · 2 π/dz, and n = ± (0,1,2,3,...).

We have used periodic boundary conditions for this case, which is physically sensible for large crystals. The wave
functions are propagating plane waves in this case. It is, however, more common and sensible to use fixed boundary
conditions, especially for small dimensions. The wave functions then are standing waves. Both boundary conditions
produce identical results for energies, density of states and so on, but the set of wave vectors and quantum
numbers are different; we have
kz = jz· π/dz, and j = 1,2,3,.. (we use j as quantum number to indicate a change in the system). For the energy
levels in a single quantum well we now have the somewhat modified formula

E  = 

2 · π 2

2mz*
  ·  

j 2

dz2

The absolute value of the energy levels and the spacing in between increases with decreasing width of the SQW, i.e.
with decreasing thickness dz of the small band gap semiconductor sandwiched between the two large band gap
semiconductors.

Large differences in energy levels might be useful for producing light with interesting wave lengths. In infinitely deep
ideal SQWs this is not a problem, but what do we get for real SQWs with a depth below 1 eV? This needs more
involved calculations, the result is shown in the following figure.

The SQW has a depth of 0.4 eV; if it disappears for dz = 0, we simply have a constant energy of 0.4 eV for the
ground state; all excited states stop at that level.

For layer thicknesses in the nm region (which is technically accessible) energy differences of 0.2 . . . 0.3 eV are
possible, which are certainly interesting, but not so much for direct technical use.

While SQWs are relatively easy to produce and provide a wealth of properties for research (and applications), we will
now turn to multiple quantum wells obtainable by periodic stacking of different semiconductors as shown before.
 

Semiconductors - Script - Page 161



Energy Bands in Multiple Quantum Wells
  

Since single atoms may also be described as SQWs (for one electron you just have the hydrogen atom type with a
Coulomb potential), we must expect that the wave function of the electrons start to overlap as soon as the single SQWs
in the MQW structure are close enough.

The situation is completely analogous to the qualitative formation of a crystal with a periodic potential from atoms.
The discrete energy levels must split into many level, organized in bands.
This is exactly what happened; it was Leo Esaki who first did the calculations (and more) for this case for which he
was awarded the Nobel prize.
Her is the result for the same system shown above.

Energy bands with respectable band gaps develop indeed, and we now should redraw the band diagram from before
to include this fact:

We have "mini-bands" in the quantum wells (for symmetry reasons also for the holes in the quantum well along the
valence band); green denotes occupied levels; blue empty levels.

What do we gain by this (besides a Nobel prize)?

A structure that is used in commercially sold LASER diodes! In other words, quite crucial parts of the information
technology rely on MQWs.
We will come back to this issue in the context of semiconductor lasers.
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6. Principles of the Semiconductor Laser

6.1 Laser Conditions

6.1.1 Interaction of Light and Electrons; Inversion

6.1.2 Light Amplification in Semiconductors

6.1.3 From Amplification to Oscillation: Second Laser Condition

6.2 Specific Topics

6.2.1 Turning on a Laser Diode

6.2.2 Laser Modes
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6. Principles of the Semiconductor Laser

6.1 Laser Conditions

6.1.1 Interaction of Light and Electrons; Inversion

In principle, anything that emits electromagnetic radiation can be turned into a "LASER", but what is a laser?

The word "LASER" was (and of course still is) an acronym, it stands for " Light Amplification by S timulated
Emission of R adiation". By now, however, it is generally perceived as a standard word in any language, meaning
something that is more than the acronym suggests (and we will therefore no longer write it with capital letters)!
A laser in the direct meaning of the acronym is a black box that emits (= outputs) more light of the same frequency
than what you shine ( = input) on it – that is the amplifier part. But the "stimulated emission" part, besides being the
reason for amplification, has a second, indirect meaning, too: The light emitted is exactly in phase (or coherent to)
the light in the input. Unfortunately, lasers in this broad sense do not really exist. Real lasers only amplify light with
a very specific frequency – it's like electronic amplifiers for one frequency only.

A laser in the general meaning of the acronym thus produces intense monochromatic electromagnetic radiation in the
wavelength region of light (including infrared and a little ultra-violet; there are no sharp definitions) that is coherent to the
(monochromatic) input. If you "input" light containing all kinds of frequencies, only one frequency becomes amplified.

A laser in the specific meaning of everyday usage of the word, however, is more special. It is a device that
produces a coherent beam of monochromatic light in one direction only and, at least for semiconductor lasers,
without some input light (but with a "battery" or power source hooked up to it). It is akin to an electronic oscillator
that works by internally feeding back parts of the output of an amplifier to the input for a certain frequency.
Before the advent of hardware lasers in the sixties, there were already "masers " – just take the "m" for "microwave"
and you know what it is.
And even before that, there was the basic insight or idea behind masers and lasers, and – as ever so often – it was
A. Einstein who described the "Stimulated E mission" part in 1917/1924. More to the history of lasers can be found
in an advanced module.

Obviously, for understanding lasers, we have to consider stimulated emission first, and then we must look at some
feedback mechanism.

Stimulated Emission of Radiation

Understanding stimulated emission is relatively easy; all we have to do is to introduce one more process for the
interaction between light and electrons and holes. So far we considered two basic processes, to which now a third one
must be added:

1. Fundamental absorption, i.e., the interaction of a photon with an electron in the valence band resulting in a
electron(C)–hole(V) pair.
2. Spontaneous emission of a photon by the (spontaneous and direct) recombination of an electron–hole pair.

3. Stimulated emission, as the third and new process, is simply the interaction of a photon with an electron in the
conduction band, forcing recombination and thus the emission of a second photon, being an exact duplicate of the
incoming one.

All three processes are schematically shown in the band diagram below.

Looking at this picture, you should wonder why one obvious further process is missing: How about an electron in the
conduction band simply absorbing a photon? The electron could be moved up by the amount hν in the conduction band,
and would come back to the band edge by tranferring its surplus energy to phonons.

This process does take place, but it is not very strong if we do not have many electrons in the conduction band.
More importantly: It is not necessary for "lasing", but rather detrimental – we will cover it later.
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Stimulated emission, however, is not just the reverse of absorption. Again: Usually, photons interact with electrons in
the conduction band by transferring their energy to the electron, which moves the electron to some higher energy level in
the band (or to the next band, or, if the photons are very energetic (meaning X-rays), even out of the crystal) – which
means that the photons are absorbed .

On the contrary, stimulated emission is a resonant process; it only works if the photons have exactly the right
energy, corresponding to the energy that is released if the electron makes a transition to some allowed lower level.
Then, the two photons are exactly in phase with each other (and propagate in the same direction). For
semiconductors, this energy is pretty much the band gap energy, because all conduction band electrons are sitting
at the conduction band edge (more precisely, within some small energy interval above EC , of course), and the only
available lower energy level are the free positions (i.e., occupied by holes) at the valence band edge.
Stimulated emission thus may be seen as a competing process to the fundamental band–band absorption process
described before. But while all photons with an energy hν > Eg may cause fundamental absorption, because there
are many unoccupied levels above Eg, only photons with hν = Eg (plus some small ∆E, possibly) may cause
stimulated emission.

Einstein showed that under "normal" conditions (meaning conditions not too far from thermal equilibrium), fundamental
absorption by far exceeds stimulated emission. Of course, Einstein did not show that for semiconductors, but for
systems with well-defined energy levels – atoms, molecules, whatever.

However, for the special case that a sufficiently large number of electrons occupies an excited energy state (which
is called inversion), stimulated emission may dominate the electron–photon interaction processes. Then two
photons of identical energy and being exactly in phase come out of the system for one photon going into the
system.
The kind of inversion we are discussing here should not be mixed up with the inversion that turns n-type Si into p-
type (or vice versa) that we encounterd before. Same word, but different phenomena!
These two photons may cause more stimulated emission – yielding 4, 8, 16, ... photons, i.e. an avalanche of
photons will be produced until the excited electron states are sufficiently depopulated.
In other words: One photon hν impinging on a material that is in a state of inversion (with the right energy difference
hν between the excited state and the ground state) may, by stimulated emission, cause a lot of photons to come
out of the material. Moreover, these photons are all in phase, i.e. we have now a strong and coherent beam of light –
amplification of light occurred!

We are now stuck with two basic questions:

1. What exactly do we mean with "inversion", particularly with respect to semiconductors?

2. How do we reach a state of "inversion" in semiconductors?

Let's look at these questions separately!

Obtaining Inversion in Semiconductors

If you shine 10 input photons on a crystal, 6 of which disappear by fundamental absorption, leaving 4 for stimulated
emission, you now have 8 output photons. In the next round you have 2 · (8 · 0.4) = 6.4 and pretty soon you have none.

Now, if you reverse the fractions, you will get 12 photons in the first round, 2 · (12 · 0.6) = 14.4 the next round – you
get the idea.
In other words, the coherent amplification of the input light only occurs for a specific condition:

There must be more stimulated emission processes than fundamental absorption processes if we shine light with E =
hν = E g on a direct semiconductor – this condition defines " inversion " in the sense that we are going to use it.

Note that the light produced by spontaneous recombination of the electron–hole pairs, generated by fundamental
absorption, is not coherent to the input and does not count!
We only look at direct semiconductors, because radiative recombination is always unlikely in indirect
semiconductors, and while stimulated emission is generally possible, it also needs to be assisted by phonons and
thus is unlikely, too.

We will find a rather simple relation for the dominance of stimulated emission, but it is not all that easy to derive. Here
we will take a "shortcut ", leaving a more detailed derivation to an advanced module.
 

Let's first consider some basic situations for inversion in full generality.
For the most simple system, we might have two energy levels E 1 and
E2 for atoms (take any atom), the lower one (E 1) mostly occupied by
electrons, the upper one (E2 ) relatively empty. Inversion then means
that the number of electrons on the upper level, n2, is larger or at least
equal to n1.
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Let's first consider some basic situations for inversion in full generality.
For the most simple system, we might have two energy levels E 1 and
E2 for atoms (take any atom), the lower one (E 1) mostly occupied by
electrons, the upper one (E2 ) relatively empty. Inversion then means
that the number of electrons on the upper level, n2, is larger or at least
equal to n1.

 

 Two-level system in
inversion condition

In equilibrium, however, we would simply have

 

n2

n1

 = 
D2

D1

 · exp (–
∆E

kT
)

  
Here, ∆E = E2 – E 1, and D1,2 = the maximum number of electrons permitted on E1,2 (the "density of states").

In words: In equilibrium we have far more electrons at E1 than at E2 .

For inversion to occur, we therefore must be very far from equilibrium if ∆ E is in the order of 1 eV as needed for visible
light.

However, stimulated emission would quickly depopulate the E2 levels, while fundamental absorption would kick
some electrons back. Nevertheless, after some (short) time we would be back to equilibrium.
To keep stimulated emission going, we must move electrons from E1 to E2 by some outside energy source. Doing
this with some other light source providing photons of the only usable energy ∆E would not only defeat the purpose
of the game (since, after all, that is the light we want to generate) – it also would never bring us back to inversion
because of the depopulation of E2 by stimulated emission.
In short: Two-level systems are no good for practical uses of stimulated emission.

In semiconductors we could inject electrons from some other part of the device, but a semiconductor is not a two-
level system, so that is not possible.

What we need is an easy way to move a lot of electrons to the energy level E2 without depopulating it at the same time.
This can be achieved in a three-level system as shown below (and this was the way it was done with the first ruby
laser).
 

The essential trick is to have a whole system of levels – ideally a band –
above E2, from which the electrons can descend efficiently to our single
level E2 – but not easily back to E1 where they came from.
Schematically, this looks like the figure on the right.

 

The advantage is obvious. We now can use light with a whole range of
energies – always larger than ∆E – to "pump" (yes, this is the standard
word used for this process) electrons up to E2 via the reservoir provided
by the third level(s).
The only disadvantage is that we have to take the electrons from E1. And
no matter how hard we pump, the effectiveness of the pumping depends
on the probability that a quantum of the energy we pour into the system
by pumping will actually find an electron to act upon. And this will always
be proportional to the number (or density) of electrons available to be
kicked upwards. In the three-level system this is at most D1. However, if
we sustain the inversion, it is at most 0.5 · D1, because by definition we
then have at least one-half of the available electrons on E2.

 
It is clear what we have to do: Provide a fourth level (even better: a band of levels) below E1, where you have a lot of
electrons that can be kicked up to E 2 via the third level(s). It is clear that we are talking semiconductors now, but let's
first see the basic system:
 

We simply introduce a system of energy states below E 1 in the picture
from above. We now have a large reservoir to pump from, and a large
reservoir to pump to.
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We simply introduce a system of energy states below E 1 in the picture
from above. We now have a large reservoir to pump from, and a large
reservoir to pump to.

 

All we have to do is to make sure that pumping is a one-way road, i.e.
that there are no (or very few) transitions from the levels 3 to levels 4.

This is not so easy to achieve with atoms or molecules, but, as you
should have perceived by now, this is exactly the situation that we have
in many direct band gap semiconductors. All we have to do to see this is
to redraw the 4-level diagram at the right as a band diagram. To include
additional information, we do this in k-space.

 
We have the following general situation for producing inversion in semiconductors by optical pumping:

 

 

Electrons may be pumped up from anywhere in the valence band to anywhere in the conduction band – always provided
the transition goes vertically upwards in the reduced band diagram.

The electrons in the conduction band as well as the holes in the valence band will quickly move to the extrema of
the bands – corresponding to the levels E2 and E1 in the general four-level system.
"Quickly" means within a time scale defined by the dielectric relaxation time. This time scale is so small indeed
that it introduces some uncertainties in the energies via the uncertainty relation (which is considered in the
advanced module but need not bother us here).

We have now everything needed for a "quick and dirty" derivation for the inversion condition in the sense introduced at
the top.

The Inversion Condition

The condition for inversion was that there were at least as many stimulated emission processes as fundamental
absorption processes. The recombination rate by stimulated emission we now denote R se, and the electron–hole pair
generation rate by fundamental absorption is Rfa. We thus demand:

Rse   ≥  Rfa

In general, fundamental absorption and stimulated emission can happen in a whole range of frequencies for
semiconductors. While we expect that the electrons that are being stimulated to emit a photon will occupy levels
right at the conduction band edge, stimulated emission is not forbidden for electrons with a higher energy
somewhere in the conduction band. While these electrons are in the (fast) process of relaxing to EC , they still
might be "hit" by a photon of the right energy at the right time and place – it is just more unlikely than at EC.

We thus must expect both rates, Rse and Rfa, to be proportional to:

1. The spectral intensity of the radiation in the interesting frequency interval.
The differential frequency interval considered extends from ν to ν + ∆ ν; the spectral intensity in this interval we
name u(ν)∆ν or, expressing the frequency ν in terms of energy via Ephot = hν, u(E)∆E.
This value, u(E)∆E, divided by the single-photon energy Ephot = hν, essentially gives the flux of photons in this
frequency interval (i.e., the number of photons arriving per second and per area, for short).
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2. The density of states available for the processes.
The probability that a photon with a certain frequency ν and therefore energy Ephot = hν will be absorbed by an
electron at some position E 1 in the valence band (i.e., close but not necessarily equal to EV ), will be proportional
to the density of states in the valence band, DV( E1), and to the density of states exactly Ephot above this position
in the conduction band, DC( E1 + hν).
Contrariwise, the probability that stimulated emission takes place, triggered by a photon with energy hν, is
proportional to the density of states in the conduction band and to the density of states hν below in the valence
band.
This is a crucial part of the consideration – and a rather strange one, too: That both densities of states must be
taken into account – where the particle is coming from and where it is going to – is a quantum mechanical construct
(known as Fermi's golden rule) that has no classical counterpart.

3. The probability that the states are actually occupied (or unoccupied).
The density of states just tells us how many electrons (or holes) might be there. The important thing is to know how
many actually are there – and this is given by the probability that the states are actually occupied (necessary for
absorption or stimulated emission) or unoccupied (necessary for the transition of electrons to this state).
In other words, the Fermi–Dirac distribution comes in. In the familiar nomenclature we write it as f(E, EFe, T) or f(E,
EFh, T) with E Fe,h = quasi Fermi energy for electrons or holes, respectively.
The crucial point is that we take the quasi Fermi energies, because we are by definition treating strong non-
equilibrium between the bands, but (approximately) equilibrium in the bands.
We also, for ease of writing, define a direct Fermi distribution for the holes as outlined before and distinguish the
different distributions by the proper index:

fe or h(E , EFe,h, T)    = probability that some level at energy E
is occupied by an electron or hole

    

1  –  fe or h(E, EFe,h, T)   =  probability that some level at energy E
is not occupied by an electron or hole

Remember that "not occupied by a hole" always means "occupied by an electron" – whereas the meaning of "not
occupied by an electron" depends on what is referred to: Only for the valence band this means "occupied by a hole"!
(Do you also remember why this is so? If not: Think about charge neutrality!)

That is all. However, the density of states are complicated functions of E, and the spectral density of the radiation we do
not know – it is something that should come out of the calculations.

But we are doing shortcuts here, and we do know that the radiation density will have a maximum around hν = Eg =
EC – EV. So let's simply assume that the necessary integrations over u( E) · D(E)∆E will be expressible as Neff ·
u(ν) · ∆ν with Neff = effective density of states. Moreover, we assume identical Neff in the valence and conduction
band.
The rates Rse for stimulated emission and Rfa for fundamental absorption then can be written as

 Rfa  = Afa · Neff2 · u(ν) · ∆ ν · 1  –  fh in V (E1 , EFh, T) 
  · 1  –  fe in C (E1 + hν, EFe , T) 



R se  = Ase · Neff2 · u(ν) · ∆ν ·  fe in C (E1 + hν, EFe, T) 
  ·  fh in V (E1, EFh, T) 



The Afa and the Ase are the proportionality coefficients and we always use fh in V if we consider carriers in the
valence band and fe in C if we consider the conduction band.

Enters Albert Einstein. He showed in 1917 that the following extremely simple relation always holds for fundamental
reasons:

Afa  =   Ase

We will just accept that (if you don't, turn to the advanced module for a derivation) and now form the ratio Rse / Rfa.
The coefficients then just drop out and we are left with

Rse

Rfa

  = 
[fe in C (E1 + hν , EFe, T)] · [fh in V (E1, EFh, T)]

[1  –  fh in V (E1, EFh, T)] · [1  –  fe in C (E1 + hν, EFe, T)]
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With some shuffling of the terms (see the exercise below) we obtain

Rse 

Rfa

 = 
EFe   –  EFh

h ν  

with E1 and E1 + hν denoting some energy level in the valence or conduction band, respectively, implying hν ≥ Eg
(since for direct semiconductors, the smallest possible difference between some energy levels in the valence band
and some energy levels in the conduction band that are connected by a direct transition is Eg).

This is a rather simple, but also rather important equation. It says that we have more stimulated emission between E1 +
hν and E1 than fundamental absorption between E1 and E1 + hν if the difference in the quasi Fermi energies is larger
than the difference between the considered energy levels.

Thus, we have as the first laser condition:

EFe – EFh  ≥ hν  ≥  Eg 

We call this "laser condition ", because "lasing" requires inversion, i.e. that there are at least as many electrons at
the conduction band edge as we have electrons (not holes!) at the valence band edge.

It is clear that this involves heavy non-equilibrium conditions.

We need to inject a lot of electrons into the conduction band and a lot of holes (= taking electrons out) into the
valence band.
And we have to keep the injection rates at least as large as the stimulated emission rate, i.e. we have to supply
electrons (and holes) just as fast as stimulated emission takes them away if we want to keep the rate of radiation
constant.

Now we know what is needed to obtain light amplification in principle. But how much amplification do we get from a
piece of semiconductor kept in inversion? This will be the topic of the next module.

Exercise 6.1-1
Do the math for the 1st laser condition
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6.1.2 Light Amplification in Semiconductors

If we produce a state of inversion, i.e. we have at least as many electrons in a high energy state as in the low energy
state to which they fall be radiating recombinations, we will be able to amplify light.

Let's look at a real light amplifier now. The input light with an intensity I 0 enters the material, travels through the
length of it, getting amplified all the time, and finally exits with a higher intensity I.

For a quantitative analysis, let's consider a semiconductor which we keep in inversion conditions extending from z = 0 to
z = L along the z-axis. We now shine some light on it a z = 0 and with the spectral intensity uν(z = 0).

By definition, the rate for stimulated emission events, Rse, will increase in z-direction and so does the spectral
intensity of the radiation, u(ν , z) which we now write somewhat simplified as uν (z).
We also assume that the inversion conditions are the same everywhere (i.e. they do not depend on z), and now
define the net rate of stimulated emissions in short hand:

Rnet se  = Rse  –  Rfa  = Rnetse(z)  =:  R(z)

The interesting quantity, if we want to discuss the amplification of light, is uν(z), corresponding to the density of
photons that, per second, travel along the z-axis. If we have any amplification at all, it will increase for increasing z
and the rate of increase is somehow given by an amplification factor gν which must be a function of the "strength" of
the inversion condition which in turn is tied to R(z). We must expect that amplification is different at different
frequencies and it is thus wise to index g with "ν ". If gν is constant (which we can expect for constant R), the
spectral intensity uν (z + ∆z) at some point z + ∆z will be given by uν (z) as follows:

uν (z + ∆z)  = uν(z)  +  gν · uν(z)∆ z

This means that the intensity at the end of some length ∆z of material is given by the intensity available at the
entrance plus the part that is generated in the length increment considered. This part is proportional to the
incremental length ∆z available for amplification, the factor gν, which is defined by this equation and which will be
properly called gain coefficient, and the intensity available.

Making ∆z arbitrarily small, i.e. moving from ∆z to dz, yields a simple differential equation:

uν(z  +  dz )  –  uν(z)

dz
 = 

du ν (z)

dz
 =  g ν · uν(z )

The solution, of course, is

uν(z)  = uν(0) · exp (gν · z)

If we measure the intensity I of the light in some conventional units, we have the same relation, of course, because
any measure of intensity at some frequency ν is always proportional to the number of photons. The increase in
intensity then is

Iν (z)  = Iν(0) · exp (gν · z)

Formally, this is nothing but Beer's law of absorption if we introduce a negative absorption coefficient α, i.e α = – gν.

While this was fairly straightforward, two questions remain:

First, an obvious question: What determines the gain coefficient?

Second, something a bit less obvious. At this point we have made all kinds of assumptions and approximations,
and it is difficult to keep track of what kind of problem we are considering compared to reality. If you think about
this, it all boils down to the following question: Are there other losses besides fundamental absorption to the
photons and to the electrons in the inversion state that we have not yet included? Because if there are, we will have
a harder time to amplify light than we think we have. Our present major goal, the amplification of light, then would be
harder to achieve.

Those are rather difficult questions which we will only consider summarily in this module. There are, however, links to
more advanced stuff in what follows.
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Gain Coefficient and Transparency Density
  

Looking back at the simple example used for defining inversion, it is clear that the gain coefficient gν increases if the
degree of inversion, i.e. the ratio of stimulated emission to fundamental absorption events, increases.

This implies that gν increases with increasing carrier density in the conduction band which in turn demands that EF
e, the quasi Fermi energy of the electrons in the conduction band, moves deeper into the conduction band.
The gain coefficient gν , moreover, will be largest at the frequency corresponding to the energy levels where most
electrons can be found. This level moves up in energy with increasing density of the electrons; for very few electrons
it is of course EC.

Again, from the simple example used before, we can conclude that for the onset of inversion, i.e., for identical rates of
fundamental absorption and stimulated emission, nothing happens in total: Exactly the same number of photons
emerges at the output as fed into the input. We have

Iν(z)  =  I ν (0) · exp(gν · z)  =  Iν(0)

which demands exp (gν · z) = 1 or gν = 0.

The effect now will be that the semiconductor appears completely transparent to the light. The necessary density of
electrons (for some fixed density of holes) is called transparency density neT.
If the carrier density ne increases beyond neT, the maximum value of gν obtained at a certain frequency (which
increases sightly with ne) will increase, too, in a pretty much linear fashion. We find more or less empirically:

gνmax  =  a · (ne –  neT)

The factor a may simply be considered to be a material constant called differential gain factor, since it depends
more or less on material parameters like density of states, band gap, etc., and is hard to calculate for real
materials. For example, GaAs has a value of a ≈ 2.4 · 10–16 cm2 .

In total, we have a complex dependence of gν on carrier density and frequency. An advanced module will give more
details.
 

Additional Losses
  

There are two kinds of possible losses that we may have to worry about.

We may loose some photons somehow which then cannot stimulate electrons to emit another photon.

We may loose electrons in some recombination channels; these electrons then aren't available for stimulated
emission.

The first kind of loss includes fundamental absorption, but that is already included in the theory so far. Are there other
optical losses in the semiconductor?

Well, there are. Besides fundamental absorption, we also have the kind of absorption that prevents metals from
being transparent: Photons are generally absorbed by the free carriers, i.e., by the electrons in the conduction
band. If we increase the carrier density we will increase this effect.

The second kind of loss includes all electrons that recombine through one of the other channels available: deep levels,
direct recombinations, Auger recombination, excitons, .... .

These recombination events not only reduce the number of available electrons, but the ones disapperaring via
radiative recombination produce some light of their own – with the right wave length but with random phases, i.e.,
not coherent to the light we care for. This light also becomes amplified and induces a kind of phase noise.
Luckily, all these recombination losses are negligible for real devices.

There might be more loss mechanisms, but we will sweep 'em all under the rug and simply combine everything there is
(or might be) with respect to intrinsic losses (i.e., inside the semiconductor) in an intrinsic loss coefficient αi.
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The decrease in intensity due to the intrinsic losses then is

Iloss(z)  = Iν(0) · exp (–αi · z)

We can combine gain and losses then to the final equation linking the input to the ouptput:

Iν(z)  = Iν(0) · exp[(gν  –  αi) · z]

For a constant gain coefficient along the crystal, the total output is then

Iν(L)  = Iν(0) · exp[(gν  –  αi) · L]

There is an important consequence from this equation: Amplifications demands that gν – αi > 0 and that requires g ν  >
α i.

Just achieving inversion (corresponding to gν = 0) thus is not good enough. There is a minimum or threshold value
given by αi before light amplification will occur. In other words: The density of electrons has to be larger than just the
transparency density ne T.

What this means in practice is shown below in a schematic way.

Shown are curves for gν for GaAs in a halfway realistic manner including some numbers.

A constant hole density of nh = 1 · 1019 cm–3, i.e., heavily doped p-type GaAs has been used as a reference. The
electron density is raised by injection to four values marked n1 through n4 .
The gain coefficient gν is given as a function of the frequency (in terms of energy). A second scale shows the
necessary level of the quasi Fermi energy for the electrons as ∆Ee F above the conduction band edge.
For the electron density n1 we have the onset of inversion. The gain coefficient is g = 0 for exactly one frequency
corresponding to the band gap.
With increasing n, the gain coefficient is > 0 for a portion of the frequency interval, peaking at about the frequency
corresponding to Eg + ½(∆EeF) - that's where most of the electrons are!
Only when gν is above the intrinsic loss coefficient αi, which has been drawn in in a halfway realistic manner, some
amplification occurs in the part of the spectrum indicated.

More to this in the advanced module "gain coefficient"
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6.1.3 From Amplification to Oscillation: Second Laser Condition

So far we have the principle of the amplification of light by stimulated emission. Making a laser in the conventional sense
of the word still requires to produce a light beam with a "battery" – not with some input light.

Since we nevertheless need at least some input light, this is the same task as to produce an oscillator from an
amplifier in electronics, and the solution of this task is achieved along identical lines: Feed back one frequency from
the output of the amplifier to the input and make sure it is in phase (or, as we say for light, "coherent"). Thus, we
have to take . . .
 

A General Look at Feedback and Oscillations

Feeding one frequency from the output back to the input will lead to an amplification of this frequency.

Since then also the intensity of the feedback signal increases, this one frequency will become more amplified, and
so on ... – pretty soon your system is now an oscillator for the frequency chosen. That is, you feed back a large
enough part of the output to account for losses that may be occurring in the feedback loop so that still sufficient
amplitude is left to drive the amplifier. The essential parts are shown in the drawing:

If you think about this, you will discover a problem. If there is enough signal at the input, the output will go up forever
or until a fuse blows – there is no stability in the system
We need some kind of servo mechanism that adjusts the amplification factor to a value where only the losses are
recovered by amplification, so that a stable, preferably adjustable output amplitude is obtained.

This is clear enough for electrical signals, but how do we do this with light? Well, we do everything with mirrors:

1. The feed back part in general.

2. The coherency requirement.

3. The selection of the frequencies.

4. The guidance of the light including the "beam shaping " of the output.

The 4th point is new – after all, electrical signals go to wherever the wires go, but with light we have to make sure we get
a single beam if we like to have one.

We first look at the general principle of light feedback without worrying about the three other points (which we throw
in afterwards).
 

Feedback with Mirrors
  

All we have to do is to put the piece of semiconductor that is supposed to amplify the light by stimulated emission
between two partially transparent mirrors

The whole system then looks like this.
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Let's look at this in a quantitative way. We start the analysis by feeding some light with the intensity I0 (from the
left) to the semiconductor which we keep in a state of inversion by constantly supplying the necessary electrons
and holes. It will be amplified along its way through the semiconductor (length L ) if we exceed the threshold for
amplification and emerge with the intensity I1 on the right
Parts of I1 will be reflected; this intensity we call I2, it is given by

I2  = I1 · R1

R1 is the reflection coefficient for mirror 1. For R1 = 1 all the light will be reflected, for R1 = 0 all the light will be
transmitted.
The transmitted intensity is then simply I1 · (1 – R1) as indicated in the drawing.

But now we have light traveling (and getting amplified) from right to left.

It will emerge with the intensity I3, some of it (I 4 = I3 · R2) will get partially reflected and run through the crystal, and
so on and so on.

Eventually, we will reach a steady state with all intensities being constant. Let's see what that will be.

First we write down all the relations for the intensity that we have, using the formula from before that links the output
to the input:

I1  = I0 · exp[(g  – αi) · z]    
     

I2  = I1 · R1   
     

I 3  = I2 · exp[(g  –  αi ) · z]
     

I4  = I3 · R2

We dropped some indices for ease of reading and obtain immediately for, e.g., I4

I4  = I0 · R1 · R2 · exp[(g –  αi) · 2L]

To make life easy, we use a small trick and assume R1 = R2 = R (a reasonable choice automatically fulfilled if we take
as partially reflecting mirrors simply the surfaces of the crystal).

Next, because light not reflected back into the crystal is lost, we express the reflection part in terms of losses by
smartly defining the quantity

aR  :=  – 
1

2L
· ln (R1 · R2)  =  – 

1

2L
· ln (R2)  =  –  

1

L 
 · ln R

Since R < 1, αR is always positive because of the minus sign. This gives us

R 1 · R2  =  R2  = exp (–2 · α R · L)   ⇒   exp (–α R · L) = R

The losses of the external output due to the partial reflection as it would appear to an "outside" observer thus are
assigned to the crystal, too, and the factor ½ or 2, respectively, appears because the light travels twice through the
crystal.
This gives the final form for I4:

I4  = I0 · exp 
 [g –  (αi +  αR)] · 2L 




What does this equation tell us? It contains two essential pieces of information:
1. The condition for starting the process, and
2. the conditions for the stationary state.
Let's look at this in detail:
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The requirement for starting the process, i.e. for starting the oscillator, is that after one cycle (from I0 to I4) we must
have recovered I0. Or, in formal words, the starting condition is

I4  ≥ I0                

[g  –  (αi  +  α R] · 2L  ≥ 0                

This then defines a threshold value g th for the gain factor g which is given by

gth  = αi  +  αR  =  αi  –  
1

L
 · ln (R)

If the system has a gain coefficient above this value, one photon will be enough to start the process, and since one
photon is always around, the system will then start to produce light on its own without outside help.
Since the gain coefficient is a strong function of the carrier density, this also means that light production will start
automatically as soon as the carrier density (= electrons in the conduction band) reaches a threshold value neth.
And that density is larger than the density needed for inversion or transparency.

Now to the second questions: What determines the stationary state, or how much light is actually produced? Naively,
we would expect that after the start, the intensity will go up in every cycle, and if nothing changes, it will go through the
roof to infinity .

This, of course never happens, because it would imply that you inject an infinite amount of new carriers for
stimulated emission to occur at the required rate. Clearly then, the limited supply of carriers will bring down the gain
coefficient and some steady state can be expected for some specific carrier density.
Steady state simply means that your gains are exactly identical to the losses, and this means I4 = I0.

This is essentially the same equation as for the start of the process (only the ">" sign is missing) and we obtain the
final result for the gain coefficient in stationary state, g stat, and by inference for the carrier densities nestat :

gstat  = αi  –  
1

L
 · ln R  =  gth

       
nstat  = ne th       

While this looks deceptively simple, it provides a lot of open questions. First of all, we have only met our first
requirement from above for an oscillator producing coherent light at a defined frequency; the other ones are still open.
Then we might ask ourselves, exactly how the crystal manages to regulate the gain coefficient, or how the intensity
evolves with time?

Since these questions are interrelated, we first look at how requirements 2–4 can be met.

Requirement 4 is easy now:

The photons travel according to the laws of geometric optics (in a first approximation). With planar mirrors
perpendicular to the z-direction, they just run back and forth.
If we use inclined mirrors, or bent mirrors, or fibre optics, things may become complicated, but in principle we know
how to treat it.
We therefore will not worry about this point any more, but simply stick to the simple back-and-forth light path
arrangement shown in the drawing .

Requirements 2 and 3 can be met with the same basic trick:

Chose the (optical) distance between the mirrors to be a multiple of half of the wave length you want. If you use
external mirrors you must take into account that the wave length in air is different from that in the crystal, that's
were the qualifier "optical" comes in.
If we simply use the surfaces of the crystal as mirrors, the length between the mirrors is L = length of the crystal
and the condition given above then is

L  = 
m · λ air

2nref  
 = 

m · λ  

2
 m = 1, 2, 3, 4, ... 
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With λair = wave length in air, λ = wave length in the crystal, n ref = refractive index of the crystal.

If we do this, we will have a coherent beam of light travelling in z and –z-direction with a wave length λair that is
1. given by the equation above, and
2. lies in the wave length region where the gain factor is sufficiently large.
While the first condition would still allow many wave lengths, the second conditions normally admits just one. But why?

Simply because any two mirrors at any distance define a resonant structure and that is why such a system is
called a Fabry- Perot resonator (or interferometer). Only light with wave lengths given by the Fabry-Perot
resonance condition λ = 2nL/m can exist inside a "Fabry-Perot" as a standing wave.
This is best seen by looking at what would happen to light with a "wrong" wave length. Every time it travels through
the system, its phase is shifted to some extent, and pretty soon you have a wave with the phase – π for any wave
with the phase 0 and destructive interference will cancel everything except waves with phases that fit.
This is the same old principle that governs diffraction of electrons or X-ray beams in crystals, all musical
instruments, and, if you believe Richard Feynman , just about everything else, too.

In other words, we already met the 2. and 3. requirement (without noticing, perhaps), but not necessarily at the optimal
frequency which is of course the frequency with the highest gain factor g( ν ).

Or in yet other words: While the picture of light waves travelling in and out of the crystal is not wrong, what we really
have after a very short time is a standing wave inside the Fabry-Perot resonator with usually just one dominating
wavelength from the multitudes possible. It looks like this

Shown is the intensity, i.e. the square of the amplitude (and not the amplitude as a function of time) of a standing
wave with a wave length considerably smaller than the length of the crystal – as we will encounter it in reality.
The wave length is determined by the condition that ω ≈E g, or, with ω = c/(nref · λ)

h · c

nref

 ≈ Eg

Whichever way we describe the light – by its wave length λ, its angular frequency ω , or its energy ω, we can
always index these quantities now with a "g" for "gap" and know how to calculate the numerical values for, e.g. ωg.

Taking the requirement for the threshold gain and the admissible wave lengths together is called "second laser
condition", i.e.

gstat  = αi  +   αR  = α i  – 
1

L
 · ln R  =  gth

L  = 
m · λgair

2nref

 = 
m · λg

2

Since g is a function of the wave length λg or the frequency ν g, respectively, and the carrier density ne ( do not mix
it up with the refractive index nref !); g(λ, ne), we can combine both equations into

αi + αR  = g(νg, neth)

What do we know about the quantities in this equation?

We know that αi with its various components is primarily a function of the carrier density; we need its value at the
threshold density neth.
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We can expect that the optical losses described by αR are pretty much constant, but g(ν, ne) is a rather
complicated function defined by integrals over densities of states times Fermi distributions and the like; we thus
have a complex (integral) equation for the determination of neth, our only unknown parameter at this point.

Computing neth from the second laser condition can only be done numerically and requires good knowledge of the
relevant quantities. We can get a rough estimate, however, by neglecting the frequency dependence and taking the
maximum value of g at the fixed frequency, gmax. And for g max we had the empirical equation

gνmax  = a · (ne  –  ne T )

neT was the transparency density, and a the differential gain factor, a material constant.

Inserting this equation for g(νg, neth) in the second laser condition from above yields a kind of (approximate) master
equation for semiconductor lasers

n eth  = n e T  + 
αi   +  αR

a 

It includes the first laser condition (which defined ne T) in the conditions for self-induced oscillations at the "right"
frequency, parts of which are released to the outside world (this is the α R part).

And, of course, what we will have as soon as the carrier density that we inject in our semiconductor crystal contained
within a properly spaced Fabry-Perot resonator reaches the threshold is a LASER in the specific meaning discussed
before.

This leaves us now with the big question: How do we make a semiconductor laser? Or, for that matter, a simple
light emitting diode, which will turn into a laser if we put it inside a Fabry-Perot and crank up the injected carrier
density "somehow".
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6.2 Specific Topics

6.2.1 Turning on a Laser Diode

It would be a quite intesting module. Too bad, I never got around to doing it.

Sorry!
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6.2.2 Laser Modes

 This module is not finished but you can get a rough idea of what it's all about.
  

The Fabry Perot resonator introduced in chapter 6.1.3 is an oversimplification of the situation in a real semiconductor
Laser.

Without mentioning it, we have assumed an infinitely extended system in the illustrations, i.e. a one-dimensional
situation.
The active region in a real Laser, however, is finite. Often, it consists of a particular material embedded in an other
material with a different index of refraction; in any case it ends somewhere. In a most simple approximation we may
consider it to be a box of length l, thickness d and width w.

This simply means that many standing waves - with different wavelengths and different wave vector directions - satisfy
the resonance condition.

In other words - and that is the common lingo - the Laser cavity may contain many internal modes and thus does
not automatically emit monochromatic light in one direction only.
We may distinguish between axial or longitudinal modes, and transverse modes. The figures below illustrates
this
 

Longitudinal Modes Transverse Modes

Many wavelengths fit in the longitudinal direction
which we define to be the direction where we want
emission We have
l = m ·λ/2nr and m = 1,2,3,...

Many transverse modes are possible as shown.
They are undesirable and should be avoided.

Only wavelengths compatible with the band gap energy, i.e. λ = c/nr·ν ≈ c · h/nr · Eg ≈ µm will become amplified,
i.e. m is large since l is typically many µm.
The distance between allowed frequencies is ∆ν = c/2l · ν ≈ 80 GHz for l = 500 µm. The emission lines of the
longitudinal, modes are thus very close together.

Laser modes, what to do with them, and how to make a Laser working in only one mode - this is what we naively expect
a Laser to be - is clearly a science in itself.

We will not go into details, suffice it to say that monomode Lasers are possible by optimizing the resonating
properties of the cavity to the local gain inside it.
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7. Light Emitting Devices

7.1 Basic Requirements and Design Principles

7.1.1 Products, Market, Materials, and Technologies

General Considerations

All light emitting devices – LEDs or laser diodes – have some device principles and requirements in common:

There is a defined volume in the device – the recombination zone (or active volume) – where the generation of light
takes place.
The increase in the minority carrier density necessary for radiative recombination is obtained by injecting electron
and hole currents across suitable junctions.
The device is made so that most of the injected carriers recombine radiatively in the active volume – i.e. the
quantum efficiency and the current efficiency should be as large as possible. This is exactly the opposite of the
regular Si p–n junction, where we try to keep recombination in the SCR (and thus leakage currents ) as low as
possible.
For lasers, an optical feedback mechanism is added (e.g. a Fabry–Perot resonator). In addition, the geometric
shape is important: Should the laser emit along a line, or just from a "point"?
The optical efficiency must be optimized, too

And, not to forget, an important consideration neglected so far: For many applications the modulation frequency
range should be large. In other words, we want to modulate the light intensity by modulating the injection currents
at high frequencies – GHz, if possible.

This is a demanding list of specifications; it cannot be met with just a few basic device architectures.

Considering the wide range of available semiconductors and the extremely diversified product spectrum, there is a
bewildering multitude of devices from many materials involving often ternary and quaternary semiconductors from the
III-V zinc-blende lattice set.
While the most complicated devices concern laser diodes (always with spectacular physics involving all kinds of
quantum well structures and tricky resonators), the humble LED is not to be sneered at either. It is always the base
of laser: If you cannot make an LED for a certain wavelength, you sure like hell will also not be able to make a laser.
The field was revolutionized some years ago when Shuji Nakamura , almost single-handedly, made working blue
LEDs based on GaN; a feat that seemed to be impossible since all the big players in the field could not do it.
At present, a race for a 12 · 109 $/year market is gaining in speed (and expenditures for research): Cheap LEDs
suitable to replace light bulbs, emitting white light at high intensity may be around the corner! But maybe they are
not. Only time (after considerable research and development) will tell.

For light emitting diodes (and of, course, for laser diodes even more so), efficiency is of supreme importance: How much
light can you get for 1 W of electrical power that goes in the device?

Much progress has been made, and more will have to be made for light bulb replacement. The figure below
illustrates that.
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The record holder, the inverted pyramid LED, is described in some detail in the link.

How large is the market for III-V devices?

Here is a link to some information.
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7.1.2 Some LED Concepts

LEDs come in many variants, satisfying needs form being cheap to being "super". The figures show some common
devices

 
This is possibly the most simple LED device. Electrons are injected into the top
p-layer, and only the photons that manage to escape will be seen. Of course,
you will try to keep the top layer as thin as possible.

 

Not very good, but then there are many applications were you do not want
particularly bright light, but cheap products, e.g. for indicator lights in stereo
systems, dashboards, etc.
You may use the same kind of material – which will be automatically
absorbing the light flowing into the depth of the device. For red light, you use
GaAlAs, for green GaP, or anything that comes in handy from the table of
possible mixtures.
The necessary layers you make with some kind of epitaxy, which allows you
to work with relatively cheap substrates.
   

A somewhat better device uses the light emitted to the back side by reflecting it
back to the front side.

 

If the light has sub-bandgap energies because it stems from excitons, you do
not have large absorption effects in the basic material. So for GaP LEDs, it
pays to make the back contact reflective and keep the layers thin.
Generally, however, this approach requires heterojunctions where the n+

layer and the substrate material must have a larger bandgap than the active
layer, so they are transparent to the light.
The N+p heterojunction may have the added benefit that the injection of
electrons becomes more efficient, but it also has the added problem that now
you must watch out for lattice constant compatibility, otherwise you may
encounter misfit dislocations
   

These kinds of LEDs emit over the whole area of the active layer; they are called surface-emitting LEDs. They are good
enough for most general light source applications.

 With quite some additional effort, such an LED can be further developed into a laser, then known as a VCSEL (=
vertical-cavity surface-emitting laser). Meanwhile, despite the additional effort (mainly for making the mirrors),
VCSELs are already widely used. (For more information, crawl the web yourself.)

If you want really high intensities , i.e., not just a lot of photons but a lot of photons per area, you must confine the light
emission to a small area where you realize high injections ratios. This is particularly important if the emitted light is to
be coupled to a fiber or wave guide for optical communication purposes. This can be done with an edge-emitting LED:

The active p-layer is confined in its lateral extension and holes and electrons
are injected through a "double heterojunction". One will be of the diode
type, the other one necessarily of the isotype.

 

As already outlined in the chapter about heterojunctions, it is possible to
achieve very large injection ratios – essentially only the wide band gap
semiconductor injects its majority carriers and the injected carriers can not
easily escape.
We will look into this situation in more detail for laser "diodes".

All things considered, we have a considerably larger efficiency with this
design and LEDs of this kind are sometimes called "superradiant" LEDs.
  

Much more could be said about the design of LEDs, some special or recent developments are discussed in advanced
modules.

Standard LED structures

Recent developments
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7.1.3 Double Heterojunctions

We have not paid too much attention to the injection of carriers into the active volume so far. The more simple LED
structures shown before employed homo-junctions, i.e., simple p–n junctions, but while this may be cheap, it has
several disadvantages

The active volume for the gain coefficient is ill defined. It is not simply given by the SCR, but by the diffusion length
of the carriers. It is therefore difficult to keep the carriers in a small volume since they can diffuse away.
The active volume for u(ν) is not defined at all. The photons can go wherever they like in lateral directions; and this
will simply not be good enough for laser diodes. Essentially, we would loose a lot of photons and the efficiency of a
laser would be low.

Homojunction lasers therefore are only usable at low temperatures. The solution, of course, are heterojunctions. They
offer several general advantages:

We may obtain very large injection efficiencies, essentially only injecting the majority carriers from the wide-gap
material into the small-gap material.
The carriers can be kept confined to the small band-gap material by the energy barriers due to the discontinuities of
the band structure. This means that the active gain volume can be well defined.
If the refractive indices of the material surrounding the active volume is "right", we may achieve light confinement,
too.

The problems with heterojunctions are clear, too:

Only rather perfect heterojunctions will work. If you introduce misfit dislocations or other defects – forget it. This
severely restricts the possible combinations of materials.
Optimizing all parameters at the same time with a limited choice of materials may be tricky, if not impossible. There
are good reasons, after all, why there is no blue (or ultraviolet) semiconductor laser at present (the first blue ones
are appearing just now = 2002).
The technology for making a laser may become quite involved, meaning expensive.

Let's look at some heterojunctions.

First we consider the case of a single heterojunction of the P-p-n+ type.

For the example chosen, practically all of the injected electrons from the n+ part are confined the the active p-GaAs,
while a considerable part of the injected holes can escape (by diffusion in forward direction).
This will get better with a double heterojunction which necessarily must consist of one diode type and one isotype
junction. The same kind of situation as above, but now with a pN junction diode on the right is shown below.

Now the escape of both injected carrier types is blocked by the band offset due to the large band-gap material on
the opposite side of the active region.
Large efficiencies can be obtained in this way, but the technology becomes rather complicated – compare the
"index-driven" laser diode shown in the following sub-chapter.
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7.1.4 Optimizing Light Confinement and Gain in Laser Diodes

Essentially, edge-emitting LEDs will almost automatically work as lasers, too, if simple conditions are met

The active region must end in "mirror" surfaces, which are most simply obtained by cleaving the crystal. Diamond
and zinc-blende type crystals will always cleave along {110} planes, which contains the fewest bonds (that's how
diamonds are processed, anyway). The cleavage planes are often almost atomically flat.
Than parts of the light will always be reflected back and the ends of the crystal act as a Fabry–Perot resonator. The
reflectance R (for nair = 1) is given by

R  = 




nsemi    –  1

nsemi    +  1





2

With nsemi = index of refraction of the semiconductor ≈ 3.6, we have R = 0.32, i.e. almost a third of the light is
reflected back into the active zone.
Theoretically, we also should have the total length of the active zone to be a multiple of the wave length desired.
However, since the total length is much larger than the wave length, some wave length will always "fit" and lasing
will occur as soon as the gain is large enough to compensate the losses.

We will have a rather poor laser. Nevertheless, it will show the general behavior of semiconductor lasers as illustrated
below:

For currents below some threshold current Ith, the device will be a simple LED emitting light with a rather wide
frequency distribution.
As soon as enough carriers are injected to cause sufficient inversion, some modes of the resonator with the "right"
wavelengths will become amplified and appear as small peaks on the spectral distribution of the light.
Well above threshold, the frequency with the highest coefficient "wins" and the laser might emit only one
wavelength.

In order to have high efficiency and a single mode, we must maximize the density of photons [i.e., u(ν)] and the gain
coefficient [g (ν)] in the same active area of the device.

This is not a condition automatically met – quite the opposite. The gain coefficient is mostly a function of the
positions of the quasi Fermi energies, i.e., the electron densities. While the laser is in operation, it is essentially a
function of the carrier injections across some junction. We cannot expect that this is homogeneous everywhere in
the active region; g is thus a function of (x,y,z), too.
Light is reflected, diffracted, and absorbed according to the (complex) refractive index nr of the medium. This is
foremost a function of the material itself, but also of the densities of available electrons. In regions with a high gain
coefficient we have a high density of electrons, too, and thus a changed index of refraction.
If, in a thought experiment, we would keep the semiconductor at equilibrium (no currents, no inversion) and feed the
light into the resonator from the outside, u(ν) would be a function of the refractive index only. However, since we
absorb and produce light by high densities of electrons in non-equilibrium, we change the optical properties of the
resonator and u(ν) couples to g( ν ) – we have rather complex conditions not amenable to simple analysis.

Still, we have two basic options looking at the extremes: We can define the active area – or better, volume – by large
values of u(ν) or g(ν) – irrespective of what the other quantity does.

If we choose u(ν), all we have to do is to surround the active volume by "mirrors" on all 6 sides, a feat that can be
achieved by enclosing the active volume with material that has a lower index of refraction. At the same time we
make sure that in the active volume – and possibly around it – we have a large gain coefficient by injecting carriers
all over the place.
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If we choose g(ν) for the definition of the active volume – letting the light wander around wherever it likes as long as
the longitudinal modes are in the active volume – we simply restrict current flow to the regions where we want it to
go.

Two laser structures based on these two principles are shown below:

First a "gain-driven" laser. The current is fed into only a small area by simple geometrical means as shown.
Without particular attention to light confinement, we still get some positive effect, because the index of refraction in
the active region is higher than in the surroundings due to the high electron density there.

 
Next, an "index driven" laser. As you can see, it is actually also gain driven to some extent.
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7.2 Specialities

7.2.1 Laser Specialities

There would be plenty of specialities. But not here.

Sorry!
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8. Speed

8.1 Some Basics to Device Speed

8.1.1 General Device Response to Input Modulation

If we take a transistor (bipolar or MOS), a light emitting device made form GaAlAs, GaP, whatever, a Laser diode, a
simple rectifying diode (pn-junction or Schottky junction), i.e. just about any device made from semiconductors, we may
modulate any of its input parameters (either a little bit or a lot), and see what happens to all other parameters. The
paradigmatic experiments, of course are

MOS transistors: Modulate the gate voltage, see what the source-drain current does.

Bipolar transistors: Modulate the base current, see what the emitter-collector current does.

Rectifying diodes: Modulate the terminal voltage, see what the device current does.

Solar cell: Modulate the light flux, see what the photo current or the photo voltage does.

Light emitting diodes: Modulate the injection current, see what the light output does

Laser diodes: Modulate the pumping (i.e. the injection current), see what the light output does.

The list could be expanded, and many variants are possible.

Generally, we have highly non-linear systems and a simple sinus modulation of the input parameter In in the form of

In(t )  = In0  +  Inm · sin (ω · t)  

Or, expressed more generally using complex notation

In(t) = In0   +  Inm · exp (i · ω · t)  

This simple input function, however, in general, will produce responses that are no longer sinus shaped, but contain
higher harmonics.

It is thus useful to distinguish between two basic modes of frequency responses, illustrated below for a simple rectifying
diode.

As long as the input modulation is kept small, the response will be linear. This is called the small signal response
or behavior.
Large modulations or signals then obviously give the (non-linear) large signal response.

Shown is the small signal response on the left, and the large signal response on the right. Note that the reponse in
any case is directly given by the shape of the I-U characteristic and thus is not directly dependent on the frequency.
That, however, must be an oversimplification. At high frequencies we must expect deviations from the 1:1
correspondence of input and output via the characteristics, and it this behavior we after. Still, the distinction between
small signal and large signal behavior (or linear and non-linear response) is still valid.

The distinction between the two cases is simple: As soon as you find significant deviations in the form of the output
signal from the from that of the input signal, you have the large signal case.

In other words: You have the small signal case, if for an input signal In(t) = In 0 + Inm · exp (i · ω ·t) your output
signal can be adequately described by

Semiconductors - Script - Page 189



O  = O0  +  Om · exp (i · [ω · t + ϕ)]  
    

Om  = V · Inm  
    
V  = Amplifikation  = dI /dU  
    
ϕ  = arbitrary phase shift

Note that for a given input signal, it may depend very much on the choice of the the working or operating point, if you
observe small signal, or large signal behavior.

While digital real devices usually operate in the large signal mode (the current/voltage is either on or off with the largest
possible amplitudes the system permits), we are only going to look at small signal behavior here.

Generally, we are now entering the very large world of electronic engineering and system analysis, but here we will
only ask ourselves one question: What constitutes the basic limits of frequency response for the paradigmatic
"ideal" devices as listed above.
A real device - always coming with wires, series resistances, parasitic capacitors and inductors, and in most cases
consisting of many connected single devices - might have a quite different frequency response; but it is always
determined by the frequency response of its individual elements.
Generally, we expect that for small frequencies ω at the input, the output will have no problem following the input.

Contrariwise, for high frequencies, the device will be to sluggish, and the output amplitude must decrease with
frequency until there is practically no more response.

What we are interested in are answers to the following questions:

What is the general (small signal) frequency response of a given basic devices as listed above?

What are the important factors, in particular material properties, that determine the maximum usable frequencies;
and what kind of specific frequency response curve do we obtain?
What can we do about it? How can we optimize frequency response; i.e. how must we design materials and devices
usable at very high frequencies?

This is not going to be easy. There are several mechanisms that influence "device speed" and their combined effects
may result in complex behavior.

In what follows we will first look at some general mechanisms that might limit device speed and than apply this to
some specific devices.
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8.1.2 Basic Time Consuming Processes

The first essential point to note is that a modulation of an output signal obtained by modulating some input always
requires a change or modulation in some internal state of the device.

And changing something always takes some time. Nothing happens instantaneously, changing something
consumes some time. We thus may start by listing the time consuming processes that we already encountered.

What kind of typical time constants in semiconductors did we encounter so far? Think about it for a minute. Well, we
had

The minority carrier life time τ . It measures the average time that a minority carrier "lives" before it recombines with
a majority carrier. It can be rather large for very clean indirect semiconductors (ms), and rather small for indirect
semiconductors (ns). The numerical value of a minority carrier life time implies that you cannot change the minority
carrier concentration at a frequency much larger than 1/τ.We have a first limit to how fast you can change an
internal state.
The dielectric relaxation time τ d. It measures the average time that majority carriers need to respond to some
disturbance of their distribution. It was rather small, typically in the ps range and given by

τd  = 
εε0

σ

Those were the two fundamental material related time constants that we encountered so far. But there are more time
constants which are not so directly obvious:
First, we have the "trivial" electrical time constant τRC inherent in any electrical system, simply given by the R · C
product. R is the ohmic resistivity, and C the capacitance of the circuit (part) considered.

R and C need not be actual resistors or capacitors intentionally included in the system, but unwanted, nevertheless
unavoidable, components. The resistivity of Al metallization lines together with the parasitic capacitance of this line
in a Si integrated circuit. e.g., gives a τRC of roughly 10–9 s, and this value (per cm line length) is directly
determined by the product of the specific resistivity ρ of the conducting material times the relative dielectric
constant εrof the dielectric separating individual wires - it is thus a rather intrinsic material property.
The physical meaning of τ RC is clear: It is the time needed to charge or discharge the capacitors in the system.
Clearly, you cannot change internal states very much at frequencies much larger than 1/τRC. And note that space
charge regions, or MOS structures always have a capacity C, too.

Second, if we turn to Lasers for a moment, we have seen that we need to feed some of the light produced by stimulated
emission back into the semiconductor by using a suitable mirror assembly.

Light bounces back and forth between the two mirrors in the simple system considered - and that means that even
after you turned off the current through the Laser diode, some light will still bounce back and forth and thus come
out until everything eventually calmed down. There is an obvious time constant

τ Q  = 
Nr · L · nr

c

With Nr = average number of reflections, L = distance between the mirrors, nr = refective index of the material, and
c = vacuum velocity of light.
If, for an order of magnitude guess, we take L = 100 µm and consider 10 reflections; the "last" photons to come out
would have to travel 10 · 100 µm = 1 mm, which takes them a time τQ = Nr · L · nr/c ≈ 10–11 s = 10 ps.
In other words, for the example given, it would not be possible to modulate the light intensity with frequencies in
excess of about 100 GHz. This seems to be a respectable frequency, but keep im mind that data can now (2001)
be transmitted through fibre optics at frequncies in the THz regime.

This example, while a bit far-fetched, gives us an important insight: There is a general relation between a time constant
of a system and a typical length of a system mediated by the speed with which things move. This means that the size
of a device may be important for its frequency response.

In other words, we can always ask: How much time does it take to move things over a distance l? And whenever the
output O is some distance away from the input In, the question of how long it takes to move whatever it takes from
In to O produces a typical time constant of the system.
In straight-forward simple mechanics l is linked to its time constant τl by the speed of the moving "things" - for the
photons considered above this was clearly the speed of light (in the medium, to be correct).
For our moving statistical ensembles, we have somewhat more involved relations, e.g. .
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L  =  D · τ 


1/2  for the relation between the diffusion length of the minority carrier
and their lifetime

        

LDn  = D · τd



1/2  for the relation between the Debye length LDn
and the dielectric relaxation time

What are the moving things? Well, besides photons, we essentially are left with electrons and holes; everything else
that might be of interest is usually immobile (dopants, localized excitons), or so slow that it should not matter for
electronic signals (phonons, mechanical movements (e.g. vibrating parts) in MEMS devices)

This brings us to a first simple and important question: How long does it take electrons or holes to move from the
source to the drain in a MOS transistor. Clearly, this will give us another maximum frequency for operating said
transistor.
The relevant velocity in this case is the drift velocity vD of the carriers, usually proportional to the field strength E
as driving force for the movement, and better expressed via the carrier mobility

μ  = 
vD

E

With the source-drain distance lSD , and the source drain voltage USD , we have E = USD /lSD and a "travel time"

τl  =
lSD

vD

  =  
lSD2

μ · USD

To get a feeling for orders of magnitude, we take a source-drain distance lSD = 1 µm and a source-drain voltage USD
= 5V, obtaining a field strength of ESD = 5 · 104 V/cm. Typical mobilities are μSi = 1000 cm2/Vs for Si. This gives
us a drift velocity of

vD  = 1000 
cm2

Vs
 · 5 · 104 

V

cm
 =  5 · 107

cm

s

Is that a large or small velocity? It might be good to look up at an old exercise at this point

The "travel time" τl then is

τl = lSD · vD =  
10–4

107
 s  =  10–11 s

A "1 µm " Si MOS transistor thus would not be able to switch frequencies beyound about 1011 Hz = 100 GHz if τ l
would be the only limiting time constant of the system.

Last, there are some ultimate limits that we should be aware off:

Nothing moves faster than c, the the speed of light (in vacuum). The consideration for the Laser from above already
gives an example for this limit.
The movement of electrons and holes has some intrinsic constant of its own: The average time between scattering
processes and the average distance or mean free path in between. While we are not very aware of the values for
these parameters, the mean free path is in the order of 100 nm.

This has an important consequence: We only can use average quantities like drift velocities, if individual carriers could
have many collisions.

Turning this around implies: If we look at travel scales around and below 100 nm, everything may change. For
transistors this small, electrons (or holes) might just speed from source to drain without any collisions in between -
much faster than at larger distances. This is the case of ballistic carrier transport which must be considered
separately.
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8.2 Dynamic Behavior of pn-Junctions

8.2.1 General Observations

First, lets consider the dynamic behavior of a simple pn-junction.

Whereas the small signal behavior at low frequencies is exactly that of the example given before, the large signal
response in practice is simply what we (and everybody else) calls the switching behavior of the diode. In other
words, we are looking at either

Suddenly switching the voltage from 0 V to some forward value Uf , or
Suddenly switching the current from 0 A to some constant forward value If .

In order to have some idea of what we want to find out, here are some typical results of experiments with modulated
inputs. First, we look at the small signal behavior by plotting the amplitude of the current output versus the amplitude of
the voltage input as a function of the frequency. What we will find looks like this:

 

While real curves may look quite different, we always will find that with increasing frequency the output amplitude
will eventually come down or go up. Often, the frequency where the output value is 3 db below or above its low
frequency value is identified as some limit frequency fl, giving us a time constant τ = 1/f l which we want to
understand in terms of materials properties.

Now we look at the switching behavior for the voltage, i.e. we suddenly switch off the voltage across the diode from 0 V
(or some reverse voltage) to some forward voltage, e.g. 0,7 V.

This is experimentally easy to do and to measure. What we obtain looks like this:

We have pronounced current "transients" describable by one (or possibly more) time constants; and we want to
know how these time constants relate to materials properties of the pn-junction.

Next, we switch the current "suddenly". The question is how to do this. In formal electrical terms, we just take a
"constant current source" and turn it on. In reality this might be a voltage source with a resistor RCS much larger than
anything else in the circuit. The current than is simply U/ RCS and switching is obtained by switching the voltage which
now could be rather large.

If we do the experiment, we will observe the following behavior:
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Again, we have transients in the diode behavior, this time the voltage is affected. But we also have a kind of
transients in the current - we will not be able to switch it off abruptly, but for some time a reverse current flow will
be observed
Since the current pulse was "made" by a (rectangular) voltage pulse and the external voltage is zero after the
switching, we are forced to conclude that the diode acts for some time as a voltage/current source after the primary
voltage was turned off. More details can be found in an advanced module

Once more we measure some time constants and we must ask ourselves how they relate to the time constants of the
voltage switching experiment and to material parameters.
Accepting all these "experimental" findings, we even must conclude that there might be several time constants which,
moreover, might depend on the particulars of the experiment, e.g. the working point, or the amplitudes of the input
signal.

This does not just look a bit involved; it really is. And the "ideal" pn-junction diode is about the most simple device
we have.

We are going to look at it in some detail in the next subchapters, even so we are not particuarly interets in plain pn-
junctions. But this will help to develop some basic understanding of the underlying processes and make the dicussion of
more involved devices easier.
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8.2.2 Small Signal Response of p-n Junctions

Equivalent Circuit Description

If we pretend for a moment that we are hard-core electrical systems engineers, we do not care at all about what a pn-
junction diode consists off, how it works, or how it is made. We simply describe it as a black box and use the two
equations from before, but now with a possible frequency dependence thrown in for the output current. For small signal
behavior we have by definition

U(t )  =  U 0  +  Um · exp (i · ωt )
   

I(t)  =  I0  +  Im(ω) · exp (i · [(ωt)  +  ϕ( ω)]

i.e. we consider a frequency dependent amplitude Im (ω ) of the current output signal and a frequency dependent
phase shift ϕ (ω).

The relation between U0 and I0 is simply given by the (DC) current voltage characteristics of our black box.

In principle, the output signal amplitude (i.e. the current amplitude) is also a function of U0 or I0; in other words of
the working point chosen. All we have to do then is to tabulate (or represent graphically) the functions Im(ω, I0 )
and ϕ(ω,I0 ) for our black box.
This is all. We always have an output signal looking exactly like the input signal, and with an amplitude proportional
to the input amplitude because we have by definition a linear system.

We know even more. We always will have

Im(ω)  = 
dI

dU
 · U(ω)

    
ϕ  = 0

as long as the output signal can be directly obtained from the DC characteristics, i.e. at small frequencies (leaving
open at present what "small" means in numbers).

Looking at our diode (or the small signal (i.e. linear) behavior of about anything else) in this way has a large advantage:

All black boxes can now be described by a suitable network of basic linear electronic elements - resistors,
capacitors and inductors. In the most simple case all elements have constant values; more realistically their value
depends on external parameters (e.g. the voltage).
Calculating the behavior of such a network is relatively simple - for a computer, that is.

However, just looking at some network or equivalent circuit diagram as it is called, has disadvantages too:

Many different kinds of networks will give exactly the same response; their is no unique choice - but often intelligent
choices.
If some network does behave like the actual device, it is not necessarily easy to extract the important physical
parameters of the device from it. In other words, if some network behaves exactly like the diode you are interested
in, it does tell you how you must change resistors and capacitors if you want to make it faster, but not which
physical parameters of the device (doping, lifetime, dimensions, ...).

The best way therefore is to construct an equivalent circuit - keeping it as simple as possible - by looking at the
physical characteristics of the real device first. We are going to do this now for our junction diode.
 

Equivalent Circuit Construction for a Junction Diode
  

If we start with the low frequency behavior of a junction diode, the equivalent circuit diagram is exceedingly simple:

It consists of a single resistor RD with a value that depends on the voltage and is given by R D = dUdiode/dIdiode =
RD(U), i.e. by the (inverse) slope of the DC characteristic of the diode as illustrated before. This is shown below
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This "network" cannot possibly give any frequency dependence, so it can not be all there is to a diode. We now
must remember that any pn-junction has a capacitance CSCR associated with the space charge region. It arises
from the ionized dopants that provide the net charge on both sides of the junction needed for any capacitor and its
value (for a symmetric junction) is given by

CSCR  = 




2e · εε0·N

U





1/2

CSCR is obviously switched in parallel to RS; our equivalent circuit diagram now transforms into this:

This network will give us a simple frequency response: High frequencies are essentially short-circuited by the capacitor;
and the current amplitude will increase with frequency (accompanied by a phase shift of 90o at the maximum).

The current amplitude will have increased twofold if the AC resistance RC of CSCR equals RD , this happens for

RC  = 
1

ω · CSCR

With our formulas for I = I(U, doping, ...) and for C SCR = CSCR (U, doping, ...) , we could calculate the limit frequency
as a function of the prime material parameters like doping, lifetime and so on - but we are not yet done in constructing
the equivalent circuit diagram:

There is a second capacitance hidden in the junction diode called "diffusion capacitance ". Lets see what it is.

Any net charges to the left and right of the junction form a capacitance. Above, we considered the space charge
region capacitance stemming from ionized dopants in the SCR which are not compensated by majority carriers as
we have it in the bulk. For diodes biased in reverse direction, i.e. with only a small reverse current flowing, this is all
there is.
But if we look at the distribution of all carriers for a diode in forward direction, we notice that we have an excess of
minority carriers at the edge of the SCR; a schematic picture was given before.
These excess minorities - only present while current flows - are coming from the injection of majority carriers over
the potential barrier which become minorities in the other part of the junction. Their concentration is increased
because a concentration gradient is needed to remove these carriers by diffusion. They are not compensated by
other charges and thus form a diffusion capacitance CDif that increases with current.
This diffusion capacitance must also be switched in parallel to RD and CSCR .

Moreover, the ohmic resistance of the bulk Si is not zero, but has some finite value RS which is constant and easily
determined by the resistivity of the Si and all other ohmic resistors in the circuit.

Clearly, RS must be switched in series to everything else, and we obtain the final equivalent circuit diagram of a
junction diode valid for all cases.

Of course, you always could lump together the two capacitors into just one, but then you loose the connection to
physical reality. Note that their numerical values will depend on physical parameters in very different ways - as we
will see below.

If we would know the value of CDif , we could now calculate the small signal response of a junction diode. We have no
ready formula, so we must derive one.

We will do that right away; it will prove to be particular enlightening for the understanding of the correspondence of
primary material parameters and their transformation to equivalent circuits.
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The Diffusion Capacitance and its Relation to Time Constants of the Device
  

The excess Qmin at to the left and right of the space charge region increases with increasing (forward) voltage U . If we
have a linear relation between U and Qmin, the capacitance CDif  would be given by

CDif  = 
Qmin

U

Since this is not necessarily the case, CDif  is a function of U and must be defined differentially as .

CDif  =  
dQmin

dU

Considering that the current I is a function of U (given by the basic diode equation), we may rewrite this expression
as

CDif   = 
dQmin

dU
  = 

dQ min

dI
 · 

dI

dU

The second term is simply the derivative of the I-U characteristics, and thus equal to the inverse diode resistance.

dQmin/dI is the interesting term. This differential quotient must have the dimension of time, and thus can be seen as the
time constant connected to CDif . In order to compute it, we need Qmin as a function of the current flowing through the
junction, i.e.

Qmin  = Qmin(I)

We have not encountered this functional relationship so far - but we came close.

In the "Useful Relations" subchapter we have an equation giving the excess minority carrier density ∆n(x ) as a function
of the distance x from the edge of the depletion layer:

∆n(x)  =  ∆n0 · exp –
x

L

With ∆n0 = excess density at the edge of the depletion zone, L = diffusion length.

In the "Junction Reconsidered" subchapter we derived an equation relating the current density j (for one of the two
current components) through the junction to the excess carrier density ∆n0 at the edge of the depletion layer:

j  = 
e · D

L
 · ∆n0

So all that remains to do is to express the charge ∆n0 at the edge of the SCR as a function of the total excess charge
Qmin, substitute it in the current equation, and do the differentiation dQmin/dI. This is easy:

Q min is simply the integral over e · ∆n (x) taken from x = 0 to x = ∞; i.e.

e · Qmin  =

x = ∞
⌠
⌡
x = 0

e · ∆n(x) · dx  =  

x = ∞
⌠
⌡
x = 0

e · ∆n0 · exp –
x

L
 ·  dx  =  e · ∆n 0 · L
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Inserting ∆ n0  =  Qmin/ L · e in the current equation from above gives

j  =  
e · D

L
 ·  

Qmin

e · L
 =  

D · Qmin

L2

The differentiation (turning to current densities j instead of currents I and interpreting Qmin as charge density) finally
yields

dQmin

dj
  =  

L2

D
 =  τ

And this, of course, is nothing but the minority carrier life time τ!

The time constant associated with the diffusion capacitance thus has a very clear physical meaning - it is the
minority carrier life time. It is, if you like, the fundamental property that causes the diffusion capacitance.
Interpreted in other words: While separated charges Q always cause a (static) capacitance C given by C = Q/U =
εε0Q · A/d ,  you always will find a (dynamic) capacitance, too, if it takes time to change charge concentrations.
The capacitance associated with some given time constant τ than is more appropriately expressed as

Cdyn  = 
τ

R

With R being some ohmic resistor which limits current flow.

Now we have all terms; the diffusion capacitance can be finally expressed as

CDif  = 
dQmin

dI
 ·  

d I

dU 
  =  

τ

RD

Finally, we look at the diffusion capacitance from yet another angle: It results from the necessity to "store" some charge
on both sides of the junction for forward current flow.

The concept of stored charge and the time constant associated with its removal will come up again later.

 

Consequences
  

We now have all ingredients to analyze the small signal response of a pn-junction - as long as it is ideal, infinitely
extended, and symmetric.
The first question coming to mind is the relation between the two capacitances. Electrically, they add up - but which one
dominates?

This is most easily seen if we consider the forward and reverse current direction separately.

The reverse current mode is easy: The diffusion capacitance is small because dI/dU is practically zero and can be
neglected. We only will find the junction capacitance C SCR. Moreover, RD is very large, certainly much larger than
RS , and may be taken to be infinite.
In forward direction, CSCR  increases with U1/2 while CDif  increases exponentially with U (look at the formulas!). This
means that in forward direction CDif will always win and dominate the total capacitance.

We thus can simplify the equivalent circuit diagrams for the two extremes:
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This means that the small signal behavior of a pn-junction is quite different in reverse or forward direction, and that it
also depends very much on the working point (the DC current) in forward direction. It also means that we only can
transmit AC signals in reverse direction.
If we now try to deduce some numbers for limiting frequencies of real diodes, we run into problems:

The diffusion capacitance will short-circuit all signal with frequencies considerably larger than 1/τ. Since the minority
carrier life time in good Si can be as large as 1 ms, we must expect problems in the kHz region - and even for life
times of 10 µs we would not get far beyond the MHz region. This is obviously far below limiting frequencies in actual
devices.

What went wrong? Not so easy to unravel, lets just consider the most important point:

Dimensions in real (Si) devices, especially integrated circuits, are much, much smaller than the diffusion length L.
For the excess minority carrier distribution as shown for a large diode, this has profound consequences.

The excess concentration must go down to zero at the contact, i.e. after a distance dCon that gives the length of
the (almost) neutral piece of Si (the distance from the edge of the space charge layer to the contact). In a first
approximation we have to replace the diffusion length L (which is in the order of magnitude of 100 µm) by dCon,
which can be a fraction of a µm.
The minority carrier excess density now decays rapidly and reaches zero at the contact, i.e. after a distance dCon.
For all practical purposes it is sufficient to assume a linear relationsship as shown below. In practice, the difference
between L and dCon is much larger.

Accordingly, we have to replace the bulk lifetime τ = L2/D by

τ tran  = 
(dCon )2

D 

 = base transit time

This is something we have encountered before by looking at real diodes.

A small device thus could be faster by several orders of magnitude.

And this is where, quite generally, the dimensions come in. We always need to move carriers from here to there,
and this takes some time determined by the distance and the velocity (or mobility), respectively, as pointed out
before.
For our case of small diodes, we may use the equation from before in the form

τ tran  = 
(dCon )2

μ · U

This tells us that the small signal frequency response of a small junction diode is ultimately controlled by the
dimensions of the device and the mobility of the carriers that carry the current.

Of course, real small devices are even more complicated. But all kinds of parameters neglected in this simple
consideration will make the frequency response worse, not better. The absolute limits are always determined by
dimensions and mobility.
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A few last words of caution:

While we replaced the (bulk) lifetime by a transit time in this simple consideration of the real device world, it would
be premature to conclude that the life time is of no importance in small devices.
It also would be premature to conclude that we should reduce τ as much as possible, because this carries heavy
penalties in other areas - see the links 1, 2,
However, that does not mean that "lifetime killing" is not used on occasion. For some devices - particularly (large)
power devices - some Au might be diffused into a junction to reduce the life time as much as possible.
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9. Compound Semiconductor Technology

9.1 General Remarks

9.1.1 Major Differences to Silicon Technology

General Remarks

 
In this lecture course it is assumed that you are tolerably familiar with main stream Si technology.

If you are not really acquainted with that subject, or you forgot most or parts of it, turn to the "Electronic Materials
Hyperscript", specifically to chapter 4 and chapter 5.
We will not cover any part of compound semiconductor technology that is essentially identical to Si technology.
This includes in particular lithography, ion-implantation, basic chemical vapor deposition, sputtering techniques, or
basic plasma etching.
Instead we will focus on problems and solutions that are unique to the non-Si world. Of course, the backbone part
will only contain a rather superficial glance on this subject - the details fill not only libraries but are developing at a
fast pace.

In this subchapter we will try to get a rough overview of the more general properties of compound semiconductors that
we have to deal with.

  

Starting Material
 
Huge Si crystals with diameters of 400 mm weighing up to 250 kg can be routinely grown - absolutely free of "large"
defects like dislocations or precipitates, and with impurity levels in the low ppt (= parts per trillion) range.

This feat is simply not possible for compound semiconductors. This is not for lack of trying, but for basic
thermodynamic and mechanical reasons - and this means that this deplorable state of affairs is not going away with
more research and experience.
While the GaAs, GaAlAs, GaP, InP, ... (and so on) crystals will certainly become increasingly better with more and
more applications (and thus money for crystal growth research and development), we may safely assume that no
compound semiconductor crystal will ever get close in quality to a Si crystal. This sad fact, of course, limits some
applications, while others are less affected.

To understand the basic limitations, lets consider the growth of a GaAs crystal. Most problems are typical for its
relatives, too.

We cannot just melt some GaAs and do some crystal pulling. As has a very high vapor pressure at the melting
temperature (1238 oC) and would just evaporate off, leaving a Ga rich melt. And a Ga rich melt solidifies not far from
room temperature into GaAs and Ga - until then it consists of solid GaAs with liquid Ga inclusions).
It is even worse for GaP or GaN. Whatever you do for crystal production, you must do it in a high pressure
environment to keep the group V elements in the system.
Next, the III-Vs are generally much "softer" than Si, i.e. the have a smaller yield point. Compared to Si, small
mechanical stresses are enough to cause plastic deformation - even at low temperatures. Since thermal gradients
are always linked to mechanical stress and absolutely unavoidable during any kind of crystal growth, it is much
harder to avoid dislocations in III-Vs than it is in Si. In fact - it is impossible.
Finally, any deviation from perfect stoichiometry must result in defects by necessity - the surplus atoms of whatever
kind are included as point defects, agglomerates or precipitates. Compared to Si, where the density of intrinsic
point defects is below 10–6 even close to the melting point, you would have to have the mixture of the two elements
precisely at (1 : 1) +/- 10–6 to achieve comparable point defect levels.

Still, you can buy GaAs wafers with diameters of 150 mm and dislocation densities below about 103 cm–2 , a
remarkable achievement of the material scientists involved. How this is done will be described in subchapter 9.2.2
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Oxides
  

Si microelectronics owes as much to SiO2 than to perfect Si crystals.

Not only is SiO2 a near perfect dielectric for many applications (its dielectric constant is large enough to make
MOS transistors and capacitors efficient, but not so large as to produce large signal delays because of parasitic
capacitors; its break-through field strength is among the highest measured; it is chemically extremely resistant yet
easily etched in special chemicals and in plasma, and its interface properties are exceedingly good), but it can be
produced in extremely good quality simply by thermally oxidizing the Si.
For compound semiconductors, however, we have a simple rule: Forget about III-V oxides

They are neither "good" (they may dissolve in water), nor can they be produced by oxidizing the crystal (there are
always exceptions, of course).

This doesn't make compound semiconductor technology easier! While there are many ways to get around this problem,
it still is a problem.
 

Doping
  

Semiconductor technology depends on being able to dope the crystal both ways: p-type conductivity and n-type
conductivity is needed for most, if not all applications. Doping a semiconductor requires that two conditions are met:

First, dopants must exist - or more generally defects - that introduce electronic energy levels Edop in the bandgap
that are very close to the band edges. The difference in the energy levels, EC – Edop and Edop – EV, must be
comparable to kT (about 40 meV at room temperature), otherwise the transfer of electrons between the bands and
the dopant level does not occur at room temperature.
Second, the Fermi energy must be able to move freely - in must not be "pinned" by defect states. In other words,
the energy states of the intentionally introduced dopants should be the only, or at least the dominating ones. If there
are a lot of energy states stemming from defects like dislocations, precipitates, interfaces and so on, your Fermi
level will be "pinned" to these states and doping is simply not possible or severely restricted.
In Si, this is not a problem. In many compound semiconductors, however there are big problems with this,
especially for the II-VI compounds. As an example, it was the impossibility to produce p-type doping in GaN that
prevented the use of this "blue" direct band gap material until recently.

Doping thus is often a problem, and solving it in some hitherto unused semiconductor material is always a major break-
through in materials science.
 

Contacts
  

Any device needs at least two ohmic contacts for electrical communication with the "outside" world. An ohmic contact
must meet two requirements:

Its I(U) characteristics must be linear for both polarities (This defines "ohmic").

The ohmic resistance, dU/dI = U/I, must be sufficiently low so that the voltage drop across the contact is negligible.

Just putting some metal on a semiconductor does not necessarily produce a contact at all, you also must have some
intimate interaction - usually you must heat the system somewhat. Otherwise you have a semiconductor - dirt/oxide -
metal contact; mostly not what you want. Now consider the following list of GaAs features:

GaAs decomposes into Ga and As2-gas at about 580 oC.

The Schottky barrier height of n-GaAs is always large - about 0,8 eV for any metal.

It is difficult to dope n-GaAs to a carrier concentration > 5 · 1018 cm–3 (larger concentrations would bring down the
Schottky barrier height).
Annealing at temperatures up to 850 oC for 30 min is needed to activate implanted dopants.

Put together, the list essentially says that there are no good ohmic contacts to n-GaAs. Still, we have working devices,
so compromise must be possible. But metallization is a big issue for many compound semiconductors.
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9.2 Bulk Crystals

9.2.1 GaAs

Basic Properties

 
Producing GaAs crystals must starts with a consideration of its phase diagram.

Here it is. It is already sufficient to show that there is only a very small region where you can get solid and
stoichiometric GaAs, essentially a line. Small deviations to the left or right will produce some liquid encasements -
right after solidification and sone Ga or As related defects after complete solidification.

  

  
 If you think you could avoid or a least minimize those defects (that cannot possibly be good for a device) by melting

a perfect 50 : 50 mix of Ga and As, you must think again. Ga will start to evaporate out of your mix as soon as it
melts, changing the compositions. and son on.....

The message should be clear: It is far more difficult to produce a defect-free GaAs crystal than it is possible for Si. It is
actually impossible. And that is true for all compound semiconductors.

 The problems with III-V technology start right here!
 

  --- To be continued (or possibly not) ---
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9.3 Epitaxial Layers

9.3.1 General Remarks

Epitaxial layers play a very big role in compound semiconductor technology, while in Si it was only used for the bipolar
technology. MOS and CMOS technologies for many generations could do with the (for Si expensive) epitaxial layer
deposition techniques. In compound technology it is different for several reasons:

The substrates are far less perfect than Si single crystals, and epitaxial layers usually have a better crystal quality
than the substrates (this was also a main driving force behind Si epitaxy in the early days of Si technologiy in the
seventies).
There are more (and sometimes relatively cheap) methods to grow epitaxial layers of compound semiconductors.
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10. Specialities

10.1 Silicon Carbide

10.1.1 Silicon Carbide - Material Aspects

Structure and Basic Properties

There is no such thing as plain SiC!

Instead, whenever you look in the literature, you will find names like 3C-SiC, 6H-SiC, 4H-SiC, or 2H-SiC. In other
words: There are many different polytypes of SiC.
Polytypism is a special case of Polymorphism, which means that a given element or compound can assume
more than one crystal structure. Polytypism simply is the one-dimensional variant of polymorphism.

SiC (unfortunately) is sort of the paradigmatic material for polytypism. The always identical hexagonal two-dimensional
SiC layers can form many crystal structures by different ways of stacking the layers on top of each other - that's why it
is one-dimensional. See "MatWiss I" (in German) for the basics of how crystals can be formed by stacking atomic
layers.

SiC does not just have a few polytypes, it has more than 200! Now you have a problem: which one is the best for
the application you have in mind, and if you know that, can you actually make it all by itself (and not in a mix with
all the others)?
SiC is also the only stable group IV - IV compound semiconductor. No other combination of the elements C, Si,
Ge, Sn exists in a defined lattice (and not just as mixed crystal like Si-Ge).
All polytypes have a rather large indirect bandgap and other properties, which make SiC a very interesting material
for many applications.
As you may have guessed, SiC is devilishly difficult to grow as a (large) single crystal of one polytype with low
defect density. SiC actually boasts a particular (and very bad) lattice defect all of its own - so-called micropipes -
the likes of which have not (yet) been found in other crystals.

The formal way of identifying polytypes, ie.e. the nomenclature of the polytypes, is explained in the link (basic module);
here we just look at the more important variants in terms of the familiar "ABC" stacking definition. The basic building
block (not necessarily a unit cell) is highlighted in light blue.

Upon contemplation, you should be able to notice that the "3C" structure is nothing but the ABC stacking sequence
of a close-packed fcc lattice; the 2H is the corresponding simple hcp structure resulting from an AB stacking
sequence.
Your guess then that C stands for "cubic"; H for hexagonal, is correct. If an "R" comes up in variants not shown
here, it stands for rhombohedral.
In some older nomenclature, cubic SiC is also known as β-SiC; the hexagonal phase (6H-SiC more or less) is the
α-SiC

Not only the structure of SiC polytypes is different, but so are their electronic properties.

The always indirect band gap varies from 2.4 eV for the cubic 3C-SiC to 3,3 eV for the simple hexagonal 2H-SiC
variant. Other relevant parameters like carrier mobility might be quite different, too. Some values (mostly adpated
from the publications or presentations of Erlangen (Germany) SiC group) are shown below
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   4H-SiC 6H-SiC 15R-SiC 3C-SiC

Band Gap [eV] 3.265 3.023
3.03 2.986 2.390

Lattice Constant [Å]
a 3.08

3.073 3.08 3.08 4.36

c 10.05 15.12 37.70 -

Effective Mass [mc]
me 0.37 0.69 0.53 - 0.28 0.68 - 0.25

mh 0.94 0.92 - -

Mobility (@ 300K) [cm2/Vs]
µe 500 300 400 900

µh 50 50 - 20

Thermal conductivity (RT)
[W/cm · K] 3.0 - 3.8 3.0 - 3.8   

If you look at the table long enough, you should now actually have a question!

Anyway, besides the rather large bandgap, the effective masses and the mobilities are not so remarkable compared to
the more standard semiconductors.

However, if you compare on a more specific level, there are definite advantages. Activate the link if you are
interested.
 

Crystal Growth, Wafers and Defects
  

Here we will only look at the basics; details are left to an advanced module.

In most cases, large single rystals are grown from a melt (e.g. Silicon) or some solution (e.g. quartz, or sugar if you
leave you coffee cup around too long), but this is not a feasible option for SiC single crystal growth since SiC does not
have a liquid phase under normal conditions (i.e. without applying a large pressure). SiC is also extremely hard (close to
diamond) and therefore has a high melting point (or is it the other way around?).

There is also, in principle, no crucible material that could contain molten SiC at is nominal melting point
temperature of < 2.500 o C. Nevertheless, SiC was grown from a melt at 2200 oC and 150 bar in a recent study,
but this is probably not a commercially viable process.

We need a basically new method of crystal growth. Some "older" techniques are described in the link, the main method
used nowadays is physical vapor transport (PVT) also known as seeded sublimation growth or modified Lely method.

A piece of SiC is heated to (1800-2600) o C at low pressure. Due to the
high sublimation rate, SiC vapor forms and deposits itself on a cooler
single-crystalline seed crystal.
Straightforward and basically simple, as shown in the schematic picture
on the right.

 

However, pondering the situation, some questions should come to mind:  

What materials can you use for the crucible and everything else that gets hot?
After all, not many materials can cope with temperatures above 2000 oC!

 

Well, you are basically stuck with graphite, and maybe a bit of Ta here
and there. That means, of course, that you are forming SiC also on your
crucible walls and everywhere else. If it flakes off, you will have a defect
problem.

 

What kind of growth rate can your get?  

Well, as you would expect: Not much! Growth rates depend on many
parameters, but are in the range of 0.2 - 2 mm/hr. That's about a factor of
50 slower than the growth rates for Si crystal pulling and that makes SiC
crystal growing automatically expensive

 

What polytype will you get (hoping that it will not be a mixture)? What
determines what you get? Can you control it and, if yes, how?
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Good question! First, you might get mixtures as shown in the picture
(courtesy of the Erlangen group). Otherwise, the following parameters are
essential:

Polytype of the seed crystal (as you might have guessed).
"Face" of the seed crystal; i.e if the surface is a C- or a Si layer. If
you start with a 4H-SiC seed crystal, for example, you tend to get
4H-SiC if you have a C-face, and 6H-SiC if you have a Si face.
Why? Nobody really knows.
Temperature difference and - gradient betwen SiC source and seed.
Small values tend to favor 4H-SiC, larger values 6H-SiC growth.
Gas composition. Whatever gas you add will influence the polytype
you obtain. C-rich gases, for example, promote 4H-SiC growth
The pressure, oddly enough, seems not to have a large influence
on polytypie.

 

Note that while the polytype 6H is the easiest to grow, 4H would be favored by the power electronics industry.

Last not least: What kind of crystal quality do you get? What is the dislocation density?

The bad news is: the dislocation density is high. The good news is, you do not worry too much about that - you
worry about something weird called "micropipe (and mixtures of polytypes, and all kinds of stacking faults or
special boundary faults, and carbon inclusion, or Si inclusion, or big voids, ...).
To quote an Internet source: "Problems with micropipes and polytypes dominate to such a degree that the research
of dislocations, vacancies and impurities still remains an academic activity".

What are micropipes? Well, micropipes are hollow channels running through the lattice; the diameter of these pipes is
(0.1 - 5) µm.

It is not totally clear what micropipes are, how they are formed, and why they
exist at all. The probably best way to think about these defects is to consider
them to be screw dislocations with a "giant" Burgers vector (violating the rather
general rule that Burges vectors always are the shortest possible lattice vectors)
and a hollow core.
The hollow core actually makes sense. If you accept the "giant" Burgesvector bit,
it is energetically far more favorable to have the dislocation core hollow instead of
extremely strained. What you pay in terms of surface energy, you easily gain in
avoided elastic energy.

 

But this is not gospel yet. Micropipes are at present simply not completely
understood.

 

Micropipes are also somehow connected to the growth mechanism of the crystal.
This is neatly illustrated in the picture on the right (taken with a scanning force
microscope, courtesy of H. Strunk; Uni Erlangen) where typical growth spirals are
visibly centered around a micropipe.

 

Micropipes also will definitely kill any device that contains one of them. They thus
must be avoided as much as possible!

 

 
Let's look at the state of the art of what is around. To quote from the product sheet of the major SiC supplier Cree, Inc.
(located somewhat ironically in Silicon Drive 4600 in Durham, North-Carolina, USA):

At present, wafer diameters are 50.8 mm or 76.2 mm; doping (usually with N for n-type and Al for p-type) at high
levels produces resistivities in the 0.0x mΩcm region. Or there is no doping for semi-insulating stuff.
4H- and 6H-SiC polytypes are sold; for a more detailed look of some of the products that are available use the link.

The 2003 state of the art (mostly in the laboratories and not necessarilly on the market) is summarized in the following
table:

Diameter 100 mm
"Four-inch"

For Si, 100 mm was the standard back
in the late 70ties/early 80ties).

Defects

Micropipes

< 1 cm–2 for
3''
< 30 cm–2 for
100 mm

Increasing wafer size usually
dramatically increases micropipe
density

Dislocations 3 · 103 cm–2

achieved Factor 10 reduction
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Of course, in the many laboratories (university and industrial) devoted to SiC, some data might be even better.

 

Electronic Properties
  

The basic electronic properties were listed above and in an illustration module, here we briefly consider doping and
optical properties.
First let's ask ourselves a question that should have come up by now: Why is SiC interesting for optoelectronic
applications? How could Siemens make light-emitting diodes back in 1977 from an indirect semiconductor?

Well, maybe there are bound excitons as in the case of GaP? Right - maybe! To quote one of the recommended
Books (published 1995):
"The emission (of α-SiC; i.e. probably 6H-SiC) occurs in a wide band from about 400 nm - 600 nm with a
maximum at 480 nm (blue). So far it is not clear what kind of transition causes the SiC emission".
Now you should be glad: There is something left to do - for you!

The situation becomes a bit clearer, maybe, by pondering another quote (from a very good source in Sveden):

" The viewpoint of a crystal grower differs largely from that of a spectroscopist. The work of a crystal grower is often
to provide material of very high quality and sometimes also of high purity. A PL spectrum which may look excellent
for a crystal grower (i.e. shows nothing for an indirect semiconductor), may perhaps not create any higher emotional
feelings for a spectroscopist. Indeed, samples which for a crystal grower may be the outcome of failed experiments
will be the samples of greatest interest for the spectroscopist".
In other words: SiC crystals usually are full of defects with some energy level in the band gap. Besides the levels
form the (usually heavy) doping, and all kinds of exciton levels, there are all kinds of atomic defects, spanning the
range from simple vacancies to impurity atoms and clusters of atomic defects with levels in the big and roomy band
gap of SiC.
There are thus many possible transitions or recombination channels for electron and holes, and some of those
transitions might will emit light.
Some more information about the photo luminescence properties of SiC can be found in an advanced module, here
we simply note that the light emission properties of SiC are not so much a property of the ideal (doped) perfect
material, but of crystal lattice defects in a general sense.

However: Whatever recombination events produce light - the quantum efficiency is never very good - the over-all
efficiency of the early LEDs was < 1%. Nevertheless, before the advent of GaN in the nineties, SiC LEDs were the only
ones emitting in the blue.
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10.1.2 Silicon Carbide - Applications

Suffice it to say that now (2019) SiC is finally taking off. The Bosch company is heavily investing in SiC devices for
handling power, presumably inside the "electric" car (and in trains, of course).

We also see SiC in the power modules handling solar power and in the ultra-high speed power modules needed for
the "G5" technology in communications.
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10.2 Gallium Nitride - GaN

10.2.1 Basics and History

Another module that would be interesting to write

Do it!
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10.3 II - VI Semiconductors
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10.4 Semiconducting Polymers

10.4.1 Basics

The Language Barrier

When we look into the rapidly increasing field of semiconducting polymers, we look into something rather new and
rather exciting. We also look at some problems!

Knowing a lot of solid state physics in general, and semiconductor physics in particular, as we do if we made it this
far in the course, will not be sufficient to understand semiconducting polymers. You will now be biased to consider
all semiconductors in terms of electrons and holes, which move more or less freely in three more or less equal
directions. Their movement happens either in a conduction or in valence band, which have some density of states
and exist because of a three-dimensional periodic potential. The overruling parameter is the Fermi energy of the
system.

There is nothing wrong with this particular way of modeling crystalline semiconductors - in terms of equations and in
terms of thinking about them. There would be nothing wrong by trying to fit semiconducting polymers into this mold
either - except that they do not fit into that mold all that well, and that practically nobody out there, who is working with
semiconducting polymers, is doing it.

Instead, the language used is heavily biased from chemistry ("oxidation state", ,), and merrily interlaced with terms
describing quasi particles ( "soliton", polaron, or bi-polaron") that originally were toys from the arsenal of theoretical
physicists.
Of course, we will also find some semiconductor terms like "holes", "doping", or "recombination", too.

This seems to be bad enough. But it is even worse: All those terms may not imply what you might think they imply,
but something a bit or a lot different.

We have neither the time, nor the prerequisite knowledge (in this statement I include myself), to delve deeply into the
subject. We will just scratch the surface and look at some major points with respect to semiconducting polymers and
their applications.

In time some more depth might be added to this via advanced modules, and some basic modules may provide more
background.
At present, however, you may want to look at the polymer modules of other scripts or a short vocabulary of special
terms:

Einführung in die Materialwissenschaft I
Polymers II
Vocabulary for Semiconducting Polymer

The last link refers to a basic module contained within this Hyperscript offering a short (and not yet complete)
vocabulary of the essential terms.
 

Conducting , Semiconducting, and Insulating Polymers
  

When we use the word "polymer" from now on, we only consider so-called conjugated polymers. Only these single-
bond - double-bond chains are at the heart of conducting and semicondcuting polymers as we will see shortly.
First, however, we ask ourselves a simple question that is, however, not all that easy to answer:

Why are conjugated polymers not always one-dimensional
conductors?

Why did we all just "know" that polymers are insulators? Why a Nobel prize for the discovery of conduction
polymers?

You probably never thought about it. Nor was this question raised in the more basic polymer stuff you may have learned.
What you learned was that polymers are insulators since there are no free electrons. Period.

But now we are more advanced and realize, if our nose is rubbed into the matter, that the double bonds along a
conjugated chain should not be localized - they should occur to the left or to the right of any given atom with the
same probability.
In other words, things in conjugated chain should be like shown below; in other words exactly as we know it to be in
a benzol molecule which is shown with the same symbolism.
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In crystal physics terminology, the π-electrons all overlap and thus must form a band. This band has twice as many
states as we have electrons (one for the electron on the left, one for the electron on the right of any chain atom)

We thus should have (one-dimensional) metallic conductivity along the chain!

Well, we don't. And the reason for that is a universal pricnciple in physics, called "symmetry breaking " at its most
general form, and "Peierls transition" or "Peierls instability" in a more specialized version.

A special feature of he picture above, that only emerges because we have a long chain , is that the bond length
would be the same for single and double bonds on average, because the double bond is not localized. For localized
double bonds, of course; as we have then in small molecules, we do not expect equal bond lengths for single-,
double-, and triple bonds.
Equal bond lengths in a chain are thus an expression of a particular symmetry in long chains: Every carbon - carbon
pair is equally likely to have the double bond (= have the π-electron) at any given time. But that particular kind of
symmetry is not a required property of the chain. Symmetries, as we know from many examples, can be broken if
we gain some (free) enthalpy by doing it.
Bond lengths could be different in long chains. Even if there is no directly evident electronic reasons for this breaking
of symmetry, all "we" have to do to achieve this effect, is to invest some elastic energy that will change the bond
lengths via some elastic strain.
In a thought experiment, we can easily make the bond lengths alternatingly somewhat shorter and somewhat
longer, producing the simple-minded picture of localized (short) double bonds in a comjugated chain. The only
question now is if we would be rewarded for doing this. Or in other words: Will we get more energy back by breaking
the symmetry than we have to invest for the elastic deformation.

For a benzol molecule, the answer clearly is no! The π-bonds are delocalized (as proven by measurements); there is no
symmetry breaking. How about a long conjugated chain?

Well - the answer must be yes - we must have symmetry breaking. Simply because the "experiment" of every day
experience tells us that a conjugated polymer chain is an insulator and not a conductor, as it would be if the π-
electrons could move freely along the chain.
The question than is why do we have this Peierls instability of conjugated polymer chains - and of many other
systems including, e.g. superconductors?
Obvioulsy because we get more electronic energy back than we have to invest in elastic energy; there can be no
other reason.

That is not only true, but it is relatively easy to understand in principle what goes on - provided you understood chapter 2
of this lecture course.

Here we just note that the simple-minded picture of a conjugated polymer chain with localized π-bonds that do not
allow easy electron movement along the chain is actually rather correct, but for rather involved reasons, which we
will consider in more detail in an advanced module
Conjugated polymer chains are not conductors, but insulators, or, to be more specific, semiconductors with a band
gap sufficiently large not to show any intrinsic conductivity at 300 K or any temperature that does not destroy the
molecule anyway.

   

Semiconductors - Script - Page 215

http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_a/advanced/ta_4_1.html

	Contents of Chapter 1
	1.1.1 Goals and Contents
	1.1.2 Relation to Other Courses
	1.1.3 Required Background Knowledge
	1.1.4 Organization
	Contents of Chapter 2
	2.1.1 Essentials of the Free Electron Gas
	2.1.2 Diffraction of Electron Waves
	2.1.3 Energy Gaps and General Band Structure
	2.1.4 Periodic Potentials
	2.1.5 Band Structures and Standard Representations
	2.2.1 Intrinsic Properties in Equilibrium
	2.2.2 Doping and Carrier Density
	2.2.3 Life Time and Diffusion Length
	2.2.4 Simple Junctions and Devices
	2.3.1 Effective Masses
	2.3.2 Quasi Fermi Energies
	2.3.3 Shockley-Read-Hall Recombination
	2.3.4 Useful Relations
	2.3.5 Junction Reconsidered
	Contents of Chapter 3
	3.1.1 Silicon: General Properties and Technologies
	3.1.2 Diffusion
	3.1.3 Mechanical, Thermal and Other Properties
	3.2.1 Single Crystals and Wafers
	3.2.2 Polycrystalline Silicon
	3.2.3 Crystal Lattice Defects in Si
	3.3.1 Interfaces and Contacts
	3.3.2 Scaling Laws
	3.4.1 Junction Diodes
	3.4.2 Bipolar Transistors
	3.4.3 MOS Transistors
	Contents of Chapter 4
	4.1.1 General
	4.1.2 Modern Developments
	4.2.1 General Remarks
	4.2.2 Chemical Etching
	Contents of Chapter 5
	5.1 Materials and Radiative Recombination
	5.1.2 Recombination and Luminescence
	5.1.3 Doping of Compound Semiconductors
	5.1.4 Wavelength Engineering
	5.2.1 Total Efficiency of Light Generation
	5.2.2 Absorption and Emission of Light
	5.3.1 Ideal Heterojunctions
	5.3.2 Isotype Junctions, Modulation Doping, and Quantum Effects
	5.3.3 Real Heterojunctions
	5.4.1 Multiple Quantum Wells
	Contents of Chapter 6
	6.1.1 Interaction of Light and Electrons; Inversion
	6.1.2 Light Amplification in Semiconductors
	6.1.3 Oscillation and Second Laser Condition
	6.2.1 Turning on a Laser Diode
	6.2.2 Modes
	Contents of Chapter 7
	7.1.1 Products, Market, Materials, and Technologies
	7.1.2 Some LED Concepts
	7.1.3 Double Heterojunctions
	7.1.4 Optimizing Light Confinement and Gain in Laser Diodes
	7.2.1 Laser Specialities
	Contents of Chapter 8
	8.1.1 Limitations
	8.1.2 Basic Time Consuming Processes
	8.2.1 General Observations
	8.2.2 Small Signal Response of p-n-Junctions
	Contents of Chapter 9
	9.1.1 Compound Semiconductor Technology
	9.2.1 Bulk Crystals
	9.3.1 General Remarks
	Contents of Chapter 10
	10.1.1 Silicon Carbide - Material Aspects
	10.1.1 Silicon Carbide - Applications
	10.2.1 GaN - Basics and History
	10.2.1 II - VI Semiconductors
	10.4.1 Some Basics

