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4.9 Magnetic properties of the two electron system: singlet and triplet
state

For each electron the spin can be +1/2 or −1/2, leading to four possible states

|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩ . (4.66)

According to the following table we can combine these states to get several states which differ in the values for the
complete spin S and the component Sz:

State S Sz name picture

1√
2
(|↑↓⟩ − |↓↑⟩) 0 0 singlet

z

 

|↑↑⟩ 1 1 triplet

z

 

1√
2
(|↑↓⟩+ |↓↑⟩) 1 0 triplet

z

 

|↓↓⟩ 1 -1 triplet

z

 

HINT: Spin add like vectors. In addition to the norm of the spin only one additional
component (mostly referred to as the z-component) can be chosen. This may
be interpreted as a rotation e.g. around the z-axis as illustrated in the right
figure: two spins add to the complete spin leading to no effective z-component.

z

 

Since quantum mechanical particles are not distinguishable we already recognized that the symmetry for changing
two indices is very important; exchanging the indices for a singlet state we get an additional minus sign which
not occurs for a triplet state. Thus the singlet state is antisymmetric and the triplet state is symmetric when
exchanging the indices. Always the complete wave function of the two electron state has to be antisymmetric;
consequently the ”local” wave function of a singlet state must be symmetric and for a triplet state it has to be
antisymmetric. Therefore we always find a magnetic momentum if the local wave function is symmetric in the local
space when exchanging two indices and otherwise no magnetic momentum.

Following these considerations we will now solve the Schrödinger equation (4.64). Since we have a sum of two
independent one electron Hamiltonians we can construct the complete solution as a product of solutions of

hψ(r) = ϵψ(r) (4.67)

Let ψ0(r) and ψ1(r) be the solutions for the two lowest energy levels ϵ0 < ϵ1 of Eq. (4.67); the symmetric solution
of the two electron state with the lowest energy is

ψs(r1, r2) = ψ0(r1)ψ0(r2), Es = 2ϵ0 (4.68)

and the antisymmetric solution with the lowest energy is

ψt(r1, r2) = ψ0(r1)ψ1(r2)− ψ0(r2)ψ1(r1), Et = ϵ0 + ϵ1 (4.69)
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This leads to an energy gap between the singlet and triplet state of

Es − Et = ϵ0 − ϵ1 (4.70)

The singlet state will always be the ground state if the Coulomb coupling is negligible.
This singlet ground state corresponds perfectly to what we calculated in the last sections as the band structure of
a solid:

1. Neglect the electron-electron coupling

2. Calculate single electron states

3. Fill all states with electrons, starting with the lowest energy level,

4. with two electrons of opposite spin

5. We will never find a magnetic momentum

Now we apply the Ritz’ variational method to get approximations for ψ0 and ψ1. As a test function we chose a
linear combination of the atomic wave functions with the lowest energies of both atoms

ψ = α1Φ1 + α2Φ2 (4.71)

For the expectation value for the energy we find

ϵ′ =

∫
ψ∗hψdV∫
ψ∗ψdV

=
α2
1H11 + α2

2H22 + 2α1α2H12

α2
1 + α2

2 + 2α1α2S
(4.72)

with

S =

∫
Φ∗

1Φ2dV , H11 =

∫
Φ∗

1hΦ1dV = H22 and H12 =

∫
Φ∗

1hΦ2dV . (4.73)

Minimizing Eq. (4.72) for αi we get a system of linear equations

α1(H11 − ϵ′) + α2(H12 − ϵ′S) = 0

α2(H12 − ϵ′S) + α2(H11 − ϵ′) = 0
(4.74)

This system has non trivial solutions only if the coefficient determinant vanishes, i.e.

(H11 − ϵ′)2 − (H12 − ϵ′S)2 = 0 (4.75)

We find energy values

ϵ′± =
H11 ±H12

1± S
(4.76)

and Eigenvectors α1 = α2 and α1 = −α2, leading to

ψ0 =
1√
2
(Φ1 +Φ2) (4.77)

and

ψ1 =
1√
2
(Φ1 − Φ2) (4.78)

So according to Eq. (4.68) the complete symmetric wave function is calculated as

ψs(r1, r2) =
1

2
{Φ1(r1)Φ2(r2) + Φ2(r1)Φ1(r2) + Φ1(r1)Φ1(r2) + Φ2(r1)Φ2(r2)} (4.79)

and the antisymmetric one:

ψt(r1, r2) =
1

2
{Φ2(r1)Φ1(r2)− Φ1(r1)Φ2(r2)} (4.80)

Eq. (4.79) is an excellent solution of the Schrödinger equation (4.64) for negligible Coulomb interaction.
Not taking into account the lattice periodicity and the large number of atoms in a solid we repeated the LCAO-
calculation:

� we determined the same matrix-elements
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� using atomic orbitals as components, we solved an Eigenvalue problem

� the result is a linear combination of atomic orbitals.

We will check now, if the singlet state is as well a good approximation in the case of strong Coulomb interaction
as it is included in the Schrödinger equation (4.62):

� The first two terms in Eq. (4.79) describe a state where the electrons are located at different atoms. Even
if the Coulomb interaction is strong, the effect will be small, since the additional Coulomb energy of these
states to the complete energy is small (especially if the distance between both atoms is relatively large).

� The last two terms describe a state of two electrons, located at the same atom. Independent of the distance of
both atoms, the Coulomb energy will be large, leading to a strong increase of the energy of the singlet-state.

� The last two terms describe a charged H−-Ion and a proton. This is not a very precise picture of the physical
state if the electron-electron-repulsion is important.

� This problem does not occur in the triplet-state of Eq. (4.80); consequently the triplet-state (with magnetic
moments) can be preferred in systems with a strong Coulomb-interaction.

� The same effect we find in a solid of highly correlated electrons. In such systems the approach of separating
the state into single-electron-states completely fails.


