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3.8 Orbital angular momentum and spin

Since the Hamiltonian for atoms shows rotational invariance, the angular momentum is a conserved property. In
addition the spin is directly related to angular momentum; it is a form of angular momentum without a classical
equivalent. Thus the quantum mechanical description of the angular momentum will be discussed here as one of
the first examples, although it is mathematically quite involved.

Classically the angular momentum is defined as

L⃗ = r⃗ × p⃗ (3.27)

Following the correspondence principle we therefore get

L̂ = r̂× p̂ (3.28)

for the quantum mechanical operator L̂ where r̂ and p̂ are the operators for position and momentum.
One can easily show (see exercises) that the following relation holds

[L̂x, L̂y] = −ℏ
i
L̂z (3.29)

the same commutator relations hold for the cyclic permutation of x, y, and z.
We introduce now a general operator Â with this commutator relations

[Ây, Âz] = iℏÂx

[Âz, Âx] = iℏÂy

[Âx, Ây] = iℏÂz

(3.30)

This property of a vectorial observable Â may be summarized as[
Â× Â

]
= iℏÂ (3.31)

The 3 components Âx, Ây, and Âz are scalar observables (i.e., square matrices with Hermitian symmetry). Let’s
introduce another scalar observable:

Â2 = ÂxÂx + ÂyÂy + ÂzÂz [Note that: Â2 = Â∗Â] (3.32)

Unlike Â, Â2 is just a square matrix. It would be classically associated with the square of the length of a classical
3-vector associated with Â (if there’s one). We will show now, that Â2 commutates with Âz:

Proof: Since the commutator [ÂzÂz, Âz] is clearly zero, we have:

[Â2, Âz] = [ÂxÂx + ÂyÂy, Âz] = [ÂxÂx, Âz] + [ÂyÂy, Âz] . (3.33)

Each of those two terms can be evaluated using the above commutation relations:

[ÂxÂx, Âz] = Âx[Âx, Âz] + [Âx, Âz]Âx = −iℏ(ÂxÂy + ÂyÂx) (3.34)

[ÂyÂy, Âz] = Ây[Ây, Âz] + [Ây, Âz]Ây = iℏ(ÂyÂx + ÂxÂy) (3.35)

Therefore, those two terms add up to zero and we obtain: [Â2, Âz] = 0

The above definition of Â2 ensures that ⟨ψ|Â2|ψ⟩ is non negative for any ket |ψ⟩ (HINT: this is the sum of 3 real
squares).
Therefore, this operator can only have non negative Eigenvalues, which (for the sake of future simplicity) we may
as well put in the following form, for some non negative number l.

l(l + 1)ℏ2 (3.36)

The punch line will be that l is restricted to integer or half-integer values. For now however, we may just accept
this expression because it spans all non negative values once and only once when l goes from zero to infinity.
So, we may use l as an index to denote each Eigenvalue of Â2 . Similarly, we may use another index m to identify
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the Eigenvalue mℏ of Âz. For now, nothing special is assumed about m (we’ll show later that 2m is an integer).
Since those two observables commute, there is an orthonormal Hilbertian basis consisting entirely of Eigenvectors
common to both of them. We may specify it by introducing a third index n (needed to distinguish between kets
having identical Eigenvalues for each of our two observables). Those conventions are summarized by the following
relations, which clarify the notation used for base kets:

Â2|n, l,m⟩ = l(l + 1)ℏ2 |n, l,m⟩
Âz|n, l,m⟩ = mℏ |n, l,m⟩

(3.37)

To determine the restrictions that l and m must obey, we introduce the following two non-Hermitian operators,
which are conjugate of each other. They are collectively known as ladder operators; and are respectively called
lowering operator (or anihilation operator) and raising operator (or creation operator) because it turns out that each
transforms an Eigenvector into another Eigenvector corresponding to a lesser or greater Eigenvalue, respectively.

Â− = Âx − iÂy and Â+ = Âx + iÂy (3.38)

Both commute with Â2 (because Âx and Ây do). The following holds:

||Â+|n, l,m⟩||2 = ⟨n, l,m|Â−Â+|n, l,m⟩ (3.39)

Where

Â−Â+ = ÂxÂx + ÂyÂy + i[Âx, Ây]

= Â2 − ÂzÂz − ℏÂz

(3.40)

So

||Â+|n, l,m⟩||2 =
[
l(l + 1)−m2 −m

]
ℏ2 . (3.41)

As the non negative square bracket is equal to l(l + 1)−m(m+ 1) we see that m cannot exceed l. We would find

that (−m) cannot exceed l by performing the same computation for ||Â−|n, l,m⟩||2.
Therefore, all told:

−l ≤ m ≤ l . (3.42)

Note that the above also proves that the ket Â+|n, l,m⟩ vanishes only when m = l. Likewise, Â−|n, l,m⟩ is nonzero
unless m = −l.

Except in the aforementioned cases where they vanish, such kets are Eigenvectors of Âz associated with the
Eigenvalue of index m± 1. Let’s prove that:

ÂzÂ+ − Â+Âz = [Âz, Âx] + i[Âz, Ây] = iℏ(Ây − iÂx) = ℏÂ+ (3.43)

Therefore,

ÂzÂ+ = Â+Âz + ℏÂ+ . (3.44)

So, if |ψ⟩ is an Eigenvector of Âz associated with the value mℏ, then:

ÂzÂ+|ψ⟩ = (m+ 1)ℏÂ+|ψ⟩ . (3.45)

Thus, the ket Â+|ψ⟩ is either zero or an Eigenvector of Âz associated with the value (m+ 1)ℏ. The same is true

of Â−|ψ⟩ with (m− 1)ℏ.
Since we know that m is between −l and +l , we see that both l−m and l+m must be integers (or else iterating
one of the two constructions above would yield a nonzero Eigenvector with a value of m outside of the allowed
range). Thus, 2l and 2m must be integers (they are the sum and the difference of the integers l +m and l −m).
If l is an integer, so is m. If l is an half-integer, so is m (by definition, an ”half-integer” is half the value of an odd
integer).

The above demonstration is quite remarkable: It shows how a 3-component observable is quantized whenever
it obeys the same commutation relation as an orbital angular momentum. Although half-integer values of the
numbers l and m are allowed, those do not correspond to an orbital momentum but to a quantum mechanical spin.
Only orbital momenta can lead to whole numbers of l and m (which we will not proof here).
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Fig. 3.1: The uncertainty of an angular momentum in
x and y is represented by a rotation around the z-axis.

Fig. 3.1 schematically illustrates the above relations for m = l. The length L of the angular momentum vector
L̂ equals L = ℏ

√
l(l + 1) and is just somewhat larger than Lz = ℏl. L̂z and L̂ can be measured simultaneously,

i.e. they have the same Eigenvector system. We expect an uncertainty in L̂x and L̂y since both operators do not

commutate with L̂z. This is represented by the rotation of the angular momentum vector around the z-axis.

All Hamilton operators which commutate with an operator Â showing the commutator relations of Eq. (3.30) will
have Eigenvector and Eigenvalues as discussed in this section. As we will see later, the commutator between a
Hamilton operator and an operator Â is related to symmetries, represented by such an operator. Having discussed
the next section we will be able to state that all systems which show rotational invariance will have an Eigenvector
system |n, l,m⟩, where l and m are integer (half integer) numbers and indicate quantum numbers.

Until now we did not need any explicit representation of the Eigenfunctions |n, l,m⟩. It is the very famous set of
spherical harmonic functions which are defined as

Ylm(Θ,Φ) :=
1√
2π
NlmPlm(cosΘ)eimΦ . (3.46)

Here the adjoined Legendre polynomials are defined as

Plm(x) :=
(−1)m

2ll!

(
1− x2

)m
2
dl+m

dxl+m

(
x2 − 1

)l
, (3.47)

and the scaling factor

Nlm(x) :=

√
2l + 1

2

(l −m)!

(l +m)!
(3.48)

The first spherical harmonic functions are

Ylm l = 0 l = 1 l = 2 l = 3

m = −3 +
√

35
64π sin3 Θe−3iΦ

m = −2 +
√

15
32π sin2 Θe−2iΦ +

√
105
32π sin2 ΘcosΘe−2iΦ

m = −1 +
√

3
8π sinΘe−iΦ +

√
15
8π sinΘ cosΘe−iΦ +

√
21
64π sinΘ (5 cos 2Θ− 1) e−iΦ

m = 0 +
√

1
4π +

√
3
4π cosΘ +

√
5

16π

(
3 cos2 Θ− 1

)
+
√

7
16π

(
5 cos3 Θ− 3 cosΘ

)
m = 1 −

√
3
8π sinΘeiΦ −

√
15
8π sinΘ cosΘeiΦ −

√
21
64π sinΘ (5 cos 2Θ− 1) eiΦ

m = 2 +
√

15
32π sin2 Θe2iΦ +

√
105
32π sin2 ΘcosΘe2iΦ

m = 3 −
√

35
64π sin3 Θe3iΦ


