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Pore formation in n-type III–V semiconductors will be discussed and compared to pore formation in sili-

con. While by now many different kinds of pores were produced in silicon, the “pore zoology” in III–Vs 

was rather limited until recently. This paper will briefly review the specific pore morphologies in some 

compound semiconductors, nucleation and formation mechanisms, the relation to comparable Si pores 

(including some new observation in Si), and the particularly striking features that pores in III-

semiconductors exhibit many features of self organization and on occasion peculiar luminescence proper-

ties. 

1 Introduction Electrochemically etched pores in Si have received considerable interest since the 

discovery of macropores in 1990 [1] and the unexpected optical properties of micropores [2, 3] in 1991. 

While many questions are still open and new pore types are discovered all the time (see, e.g. [4, 5]), a 

large body of knowledge exists and can be used as a beacon for pore research in other semiconductors. In 

recent years, III–V compound semiconductors (essentially GaAs, GaP and InP) have been rendered po-

rous, too [6–11] and while the available data are few and limited, it is nevertheless worthwhile to com-

pare some salient features of pore formation in III–V compounds and Si. 

  

2 General pore formation and geometry While all three basic geometries or size ranges of pores 

(“micro”, “meso”, and “macro”) have been observed in p- and n-doped Si, in III–V material so far essen-

tially only macropores were found in n- and particularly n+-type material. If this observation  reflects a 

general property, or simply a lack of experiments, is not clear at present (Recall that macropores in  

p-type Si were not expected either and discovered much later than those in n-type Si [12–14].). Table 1 

gives a comparison of some salient features; indirectly including the work cited in [15–18].  

 The holes necessary for dissolution seem to be always supplied by avalanche breakdown in the space 

charge region (SCR). Since all III–V semiconductors contain dislocations and other defects, avalanche 

breakdown at defects occurs at a much smaller field strength than in (defect-free) Si, causing “soft” re-

verse I(V)  characteristics and leading to preferred pore nucleation at defect sites [19]. 

 While avalanche breakdown as the carrier generating mechanism is a sufficient (but not necessary) 

reason for pore formation, it will become clear in this paper that it cannot account by itself for the rich-

ness of pore geometries and morphologies found so far in III–V compounds. Note that the ubiquitous 

back side illumination (bsi) used to produce “perfect” macropores in n-type Si is useless in III–V semi- 
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Table 1 Some salient features of pore formation.  

Si GaAs GaP InP material 

doping 
n p n+ p+ n, n+ n, n+ n, n+ 

pore  

geometry 

micro 

meso 

macro 

micro 

meso 

macro 

 

meso 

macro 

 

meso 

 

 

meso 

macro 

 

meso 

macro 

 

meso 

macro 

avalan. avalan. avalan. hole  

supply 

bsi 

fsi 

avalanche 

doping avalan. doping 

no definite effects of frontside  

illumination 

growth 

direction 

(macro/meso) 

100 

113 

fractal  

100 

113 

100 

113 

100 

113 

111B 

 

111B 

random  

111B 

current line 

111 111 111 111 111A  

112 

111A 

112 

111A 

112 

stopping  

planes 

chains of octahedrons ? ? chains of tetrahedrons 

luminescence 

 

micro micro    macro 

meso  

 

oscillations 

z = depth along 

pore 

I(x, y) 

I(z)  

I(t) 

U(t) 

I(x, y) 

 

I(t) 

U(t) 

I(x, y) 

 

I(t) 

U(t) 

I(x, y) 

 

I(t) 

U(t)  

I(x, y) 

I(z) 

 

I(x, y) 

I(z)+ U(t) 

 

I(x, y) 

I(z)+ U(t) 

 

correlations  

between pores 

S.D.O S.D.O    

(x, y) OD 

S.D.O 

z OD  

 

S.D.O  

z OD  

pore crystal 

Abbreviations and explanations: bsi/fsi = backside or frontside illumination; (111A/B} refers to the polarity of the 

{111} planes; A = Ga or In layer, B = P or As layer; S.D.O = synchronized diameter oscillations; OD = ordered 

domains. “Stopping planes” means the crystallographic planes often (but not always) encountered as pore walls. 

Luminescence refers to above background intensity.  I(x, y) or I(z) in “Oscillations” means that the current oscillates 

in space, i.e. that pores are formed, or in depth, respectively, implying pore diameter oscillations, too. I(t) and U(t) 

denote oscillations in time observed without direct linkage to pore formation, e.g. during electropolishing.  

 

conductors since the minority carrier diffusion length is far smaller than the sample thickness, and that 

front side illumination experiments so far did not produce many results either. 

 

3 Nucleation of pores The first macropores in Si were obtained by providing lithographically defined 

points for (extrinsic) nucleation by simply etching tetrahedra into the Si through an oxide mask [15]. 

This worked very well and has been used to generate macropore arrays with extremely well defined 

geometries, cf., e.g. [20, 21]. In fact, extrinsic nucleation in Si works unreasonably well, meaning that 

the macropores follow only the nuclei provided even if the geometry of the nuclei is quite different from 

the intrinsic geometry the pores would assume otherwise. 

 But unassisted (intrinsic) nucleation of rather homogeneous pore distributions in Si is not a big prob-

lem either. While a micro/mesoporous nucleation layer of about 1 µm in thickness may be needed before 

stable macropore growth commences [22], the pore array is generally quite homogeneous, even though 

surface defects (like scratches or contamination) may have some influence [23]. 

 In III–V compounds the situation is completely different. Without special techniques, intrinsic nuclea-

tion tends to produce very inhomogeneous pore arrays – in the extreme the sample will have one big hole 

somewhere and not many pores anywhere else. This can be understood in principle by assuming that 
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Fig. 1  Lithographically defined pores in GaAs. a) top view; it can be seen that two pores start to grow 

for every nuclei provided. b) Cross section; showing partial loss of pattern due to parasitic pores. 

 

avalanche breakdown starts at the weakest point where subsequently most of the current will be drawn. It 

is interesting to discuss why this does not happen in Si. As shown, e.g., in [18], pore formation in Si due 

to avalanche breakdown is often (but not always) rather homogeneous although highly inhomogeneous 

nucleation could be expected, too. Suffice it to mention that in the opinion of the authors (as expressed in 

the “current burst model” of pore formation [24]), an “avalanche” of carriers will always be terminated 

after a short time, as well it must if the sample is not to explode, and nucleation of new avalanches thus 

is going on all the time. The decisive feature then is to which extent “aging” of the exposed surface (by 

hydrogen passivation in Si and by other mechanisms in III–V semiconductors) influences the nucleation 

of new current bursts or avalanche breakdowns. 

 Several methods were employed to circumvent the nucleation problem, e.g. ion implantation, [25, 26], 

front side illumination [27], or two-step anodization [28]. Results were mixed; while ion-implantation 

works, it severely restricts practical work. In the present work, good results have been obtained by opti-

mizing the electrolytic cell and the start-up of the anodization process. 

 Generating lithographically produced nucleation sites on III–V compounds is possible, of course, but 

not quite as easy as on Si (and much more expensive and harder to obtain); thus only one attempt has 

been reported [29] for (111) InP. The triangular pores obtained were probably “crystallographically ori-

ented” (see below) and followed to some extent the predefined pattern, but a well defined structure was 

seemingly not obtained. 

 This paper reports the first attempt to produce ordered pore arrays in (100)GaAs by lithographic pre-

patterning. Macropores did form, indeed, at most (but not all) of the nuclei provided, the top view of the 

pore array looks encouraging (Fig. 1a). However, “parasitic” pores started to grow from random sites, 

too, and all pores immediately branched into the two available �111B� directions. The “B” refers to the 

inequality of �111� directions in III-V crystals and designates the direction running from the P layer to 

the In layer via one straight bond (the �111A� direction then designating the direction with 3 equivalent 

bonds), effectively destroying the ordered pore array deeper in the sample (Fig. 1b). Based on this and 

other observations, it appears that generating regular pore arrays in III–V semiconductors by predefined 

nucleation is possible, but will be more difficult than in Si. 

 

4 Anisotropy of pore growth So far, micropores in Si seem to be the only kind of pores that are ran-

domly distributed without any relation to the underlying symmetries of the Si lattice. All other pores 

show preferred growth directions which in Si are always �100� and �113�. In some instances this anisot-

ropy is not easily visible, because pores are a mixture of branches in several of the available directions, 

but in other instances the anisotropy is very well defined. Fig. 2a shows an example for a new kind of Si 

macropores obtained in n-type Si with organic electrolytes (org) and front-side illumination (fsi) with 

clearly expressed �100� growth directions for the main pores and the side pores. (It may be noted in 
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Fig. 2  Examples of anisotropic macropore growth in Si; for details see text. 

 

passing that these “n-macropores (org/fsi)” are a severe challenge to all pore formation models except 

the current burst model which predicted them.) An example of “n-macropores (org/bsi)” including both 

directions is shown in Fig. 2b.  

 In the III–V-crystals investigated so far, the situation is totally different. Pores either grow in �111� 
directions (however not in all [30, 31], but only in �111B� directions), or along the “current lines” [32], 

i.e. more or less perpendicular to the surface – except at the edges of the sample (Fig. 3, 4, and 7 show 

ex-amples of this). In consequence, the {111A} plane acts as efficient “stopping planes” for pore growth. 

 

 

Fig. 3  Examples of crystallographic pores in III–V compounds. a) and b) show the uniformity of the 

pore nucleation achieved and a direct comparison of the widely different densities obtainable. c) Well de-

veloped macropores in GaAs. d) and e) Typical macropores in InP and GaP, respectively. 
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Fig. 4  a) Pores in Si and b) in InP at the edge of the anodized area. The “current line orientation” in InP 

vs. the “crystallographic orientation” in Si is clearly visible. The dark bands visible in both materials are 

due to synchronized diameter oscillations. 

 

Accordingly, pores will be classified as being “crystallographically oriented” or “current line oriented” 

The latter kind has never been observed in Si, Fig. 4 shows a direct comparison. Considering the polar 

nature of III–V semiconductors, these effects can be understood in principle if basic crystallographic 

restrictions are combined with the aging concept inherent in the current burst model (for a more detailed 

consideration see [5]). 

 

5 Self-organization and critical phenomena during pore growth The first general instance of self-

organization to be discussed, occurring in Si and all III–V semiconductors investigated so far, are the 

oscillations of the current in time and/or space, of the voltage in time only, and the pore diameter in 

space and thus necessarily in time, too; Table 1 gives an overview.  

 While it is trivial that macro- and mesopores imply by definition oscillations of the current in space, 

this is not yet widely appreciated. The term “oscillation” here (and similarly in the remainder of the pa-

per) refers to stochastic oscillations, and only implies that e.g. the current I(x, y) varies appreciably with 

some average spatial frequency in x and y. In other words, the experimental fact that randomly nucleated 

pores in all semiconductors always exhibit a well-defined average pore size and pore distance (and thus 

rather narrow peaks in reciprocal space), must be seen as a first instance of self-organization expressed 

as a current oscillation in two-dimensional space. 

 That the current through one pore may oscillate as a function of depth z (and then necessarily also in 

time), is evident from the diameter oscillations (including periodic branching already visible in Fig. 2) of 

single pores occurring in GaAs and Si under certain conditions; Fig. 5 shows some examples. Note that 

the current/diameter oscillations, while occurring in every pore, are not correlated between the pores, i.e. 

the (average) phases between the oscillations are random, and the external current (at potentiostatic con-

ditions) thus averages to a fairly constant value. 

 More recently, voltage oscillations (naturally only observable under galvanostatic conditions) have 

been observed in InP [33] and GaP [34]. These oscillations do not only occur during pore formation (in 

contrast to Si, where voltage oscillations so far have only been observed in the electropolishing regime 

[35–37], but not yet in conjunction with pore formation), but are always (and, as we shall see, by neces-

sity) coupled to synchronized diameter oscillations of the pores; cf. Fig. 6. A detailed discussion of the 

underlying mechanisms (as far as they are known) can be found in [38]. 

 It is important to note that there are fundamental, if trivial, differences between current and voltage 

oscillations. While the current flowing through any surface increment at (x, y) at any given time t can 

have any value whatsoever 
,

leading to a total current ( ) ( , , )
x y

I t I x y t
 

= 
 

∑ , the voltage, as an intensive 

variable, must always be the same at every point of the surface (not counting ohmic losses or other ef- 
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Fig. 5  Diameter oscillations in a) the smallest lithographically defined macropores obtained so far in  

p-type Si (using an optimized organic electrolyte), mesopores in Si and macropores in GaAs. 

 

fects possibly inducing lateral currents in the electrolyte, of course). Voltage oscillations then can only 

occur if a large area of the sample is “synchronized”, i.e. if all the pores follow the same dynamic pattern 

of growth. It is shown in [33] that voltage oscillations then are required to suppress the current oscilla-

tions inherently present during pore growth. In short: If the current flowing through a pore inherently 

  

b

 

Fig. 6  Synchronized diameter oscillations in InP. a) Diameter oscillations seen under galvanostatic con-

ditions with concurrently occurring voltage oscillations as shown in b). c) Self-induced synchronized di-

ameter oscillations under galvanostatic conditions in a pore crystal. 
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A2

Domain start point

 

Fig. 7 a) Domains of pores in GaAs with correlations in (x, y) (i.e on the surface). b) Schematic model of domain 

formation relying on pore retro-growth (i.e. towards the surface). 

 

oscillates (not only required by the current burst model, but also possible, e.g., by assuming that ava-

lanche breakdown at the pore tip occurs in an “on – off” fashion, i.e. in an oscillating manner), the exter-

nal current (and thus the voltage, too) would still be constant on average as long as the phases of the 

many pore-oscillators are random. If, however, most if not all pores synchronize their current oscillations 

and thus forms a domain where morphological features of pores are correlated (as now observed in InP, 

GaP and Si),  the only way to maintain a constant external current is to oscillate the voltage to counter-

balance, or better, to suppress the current variations.  

 In other words: While the current in any individual pore could oscillate without any direct indication 

of that oscillation in the quantities: external current, external voltage, individual pore morphology,  

or ensemble morphology, this is not true for voltage oscillations: If the external voltage oscillates, the 

necessary synchronization is mediated by synchronized diameter oscillations, and  there must be at least 

one large domain of synchronized pore growth. The observation (for the first time) of domains with 

synchronized diameter oscillations in Si as demonstrated in Fig. 4b (and in [5]) thus is a strong (but not 

unambiguous) indication of an inherently oscillating current in Si pores as predicted by the current burst 

model.  

 Some more manifestations of correlation between pores are “(x, y)-ordered domains” in GaAs (cf.  

Fig. 7) and the z-ordered domains in InP and GaP. In the first case, a unique array of pores as seen on  

the (x, y) surface is obtained because pores branch off from some primary pores which were nucleated in 

the center of the square shaped domains and actually grow upwards towards the surface in a manner 

indicated in Fig. 7b. The z-ordered domains contain pores with synchronized diameter oscillations as 

already shown for InP in Figs. 4 and 6.  

 There is, however, a most spectacular additional manifestation of self organization: the formation of  

two and even three-dimensional single pore crystals in InP under certain conditions; Fig. 8 shows an 

example. The pores in the pore crystal are always “current-line” oriented and formed under potenstio-

static or galvanostatic conditions, cf. [41] for details. In the latter case synchronized pore diameter oscil-

lations may occur, adding periodicity in z-direction and thus providing a three dimensional single pore 

crystal.  In contrast to e.g. self organized pore crystals in Al2O3 [39, 40], the InP pore crystals can be 

single crystals (demonstrated by the Fourier transform inset in Fig. 8) which, to the best of our knowl-

edge, makes them unique. 
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 Pore crystal formation, however, only commences after an induction (or nucleation) period during 

which a dense array of �111B� oriented pores is formed. While the geometry of this nucleation layer is 

responsible for the pore crystal formation (see [41] for details), it neatly demonstrates another essential 

point: The obvious steady-state structure of the pore crystals (with pores that easily penetrate through the 

whole 600 µm sample) can not be reached directly – it always needs a “sorting-out” step, as evidenced 

by suddenly lowering (or turning off completely) the current for a very short period of time. The results 

are shown in Fig. 9 where it is demonstrated that at the onset of current line oriented pores is obviously a 

critical phenomena – the InP sample rather quickly “forgets” about its preferred structure and has to 

build it up “from scratch” again. This not only supports the aging concept of the current burst model, but 

unambiguously proofs that avalanche breakdown, while supplying the necessary holes, is not decisive for 

the pore morphology. As Fig. 9 amply demonstrates, this property of the pore formation process offers  

 

 

Fig. 9  a) The first three dimensional pore crystal (in InP). The depth modulation was achieved by 

switching between current line oriented pores and crystallographically oriented pores by suitable current 

modulations. b) Transition between current line and crystallographic pores in InP. 

Fig. 8  Macropores in InP 

arranged in a single crystal 

(the picture shows only a 

small part of the total pattern). 

The inset is a direct Fourier 

transform of the major part of 

the picture, proving the single 

crystallinity (the slight distor-

tion is due to specimen tilt in 

the SEM). 
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InP GaP

 

Fig. 10  Direct comparison of the cathodoluminescence from porous layers in a) InP and b) GaP. 

 

rather interesting applications, allowing the formation of three-dimensional structures in the sub-µm 

region. 

 

6 Luminescence of porous layers Porous III–V compounds show some interesting luminescence 

properties, cf. [42, 43], which are not fully understood at present. Suffice it to say that (meso)porous InP 

layers do not show any (cathodo)luminescence when subjected to the electron beam in a SEM, while the 

light produced from the bulk of the crystal is easily detected (Fig. 10). This is not unexpected, because 

the large surface area in the porous region may efficiently recombine electron-hole pairs and thus 

quenches the radiative transitions. 

 Spectacularly, in GaP the opposite is true: The porous layer produces an extremely intensive lumines-

cence, not only at the frequency corresponding to the band gap energy, but also at double frequency, i.e. 

for the second harmonic. Details can be found in [43], this property is of obvious interest for potential 

applications. The mechanism for this strongly increased luminescence is not fully understood at present, 

but it should be kept in mind that GaP is an indirect semiconductor and only useful for optoelectronics 

because strong radiative transitions can be induced via localized excitons introduced by isoelectronic 

doping. Mechanisms of luminescence thus are much more complicated than in direct semiconductors and 

the effect of porosity is harder to assess theoretically. 

 

7 Conclusions While pore formation in Si, GaAs, GaP, and InP shows many material specific idio-

syncrasies that must be treated in the context of the detailed material properties (including its basic 

chemistry) a unified framework for understanding pore formation in semiconductors is slowly emerging. 

It is truly interdisciplinary, combining chemistry, electrochemistry, semiconductor and solid state phys-

ics, and stochastic physics in particular.  
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