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We present an analytical description of thermal wave

propagation for cylindrical symmetry based on a transfer

function concept which is analogous to optics. This concept

leads to a general criterion for the spatial resolution and to

computational benefits. It is applied to amedium consisting of a

thermally thin layer of highly heat conductive material on a

finite substrate. The result is then specialized to the two cases of

highly heat conductive layer on quasi-infinite substrate and
finite substrate with no additional layer. This completes the

theory of heat propagation between the thermally thick and

thermally thin cases. We encounter the mathematical necessity

to revise the definition of the latter terms, taking into account the

lateral modulation of the thermal signal. The derived expres-

sions are verified experimentally using infrared lock-in

thermography.
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1 Introduction An oscillating heat source in or on a
solid sample leads to a so-called thermal wave [1], which is the
basis of a variety of measurement and imaging methods [2].
The thermal wave patterns are analyzed in order to determine
thermal and optical properties of materials such as their
absorption, conductivity, diffusivity, effusivity or heat
capacity using the photoacoustic method [3] and related
photothermal techniques like photothermal beam deflection
(for a review, see Ref. [4]), photothermal surface displacement
[5, 6], the 3v method [7, 8] or the recently developed
frequency-domain thermoreflectance method [9, 10]. Other
properties are also accessible such as elastic anisotropy [11],
nonlinear optical surface [12] or magnetocaloric [13] proper-
ties. In addition, various thermal-wave imaging methods have
been developed such as scanning photoacoustic microscopy
[14], photothermal [15, 16] and thermoreflectance [17–19]
microscopy as well as lock-in thermography (LIT) [20–22].
Thermal wave-based measurement and imaging methods are
used in a broad area of applications, ranging from non-
destructive evaluation (NDE) of materials [23, 24], biological
and medical investigations [25, 26], testing of electronic
devices [27], to materials research (see, e.g., [28]), with a
resolution reaching down to themicro- and nanoscale [29–31].
Thermal waves are a special type of diffusive waves [32,
33] and, as such, are strongly damped. Both their wavelength
and damping are determined by the thermal diffusion length
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2D=v

p
, with the thermal diffusivityD and the angular

frequency v of the thermal wave in a homogeneous medium
[1, 34]. Analogously to optical penetration and considering
only one-dimensional heat propagation, a medium is usually
considered to be thermally thin (thick) if, for a given
frequency, its thickness is much smaller (much larger) than
L (see, e.g., [3]). In layered systems there are several
diffusion lengths corresponding to the different materials.
Therefore, such systems show a strong dependency on the
excitation frequency due to the varying penetration depth.
Film-on-substrate systems have been given special attention,
where thermal wave investigations aimed, on the one hand,
at determining certain material parameters (as, e.g., film
thickness [6, 35], thermal conductivity, diffusivity or
effusivity [36–38], thermal interface resistance [39], or
several of these together [10, 40, 41]), on the other hand, at
the investigation of fundamental aspects of heat transport (as,
e.g., in amorphous [42–44] or alloyed [45] materials).

Mathematically, thermal waves are obtained as solutions
of the heat equation under certain boundary conditions and
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 Cases of heat propagation treated in this contribution.
(a) HCL on a finite substrate, (b) ditto on a thermally thick substrate,
(c) finite thickness sample, (d) thermally thick sample, (e) thermally
thinsample.Since(a) is themostgeneralcase, theotherscanbefound
as limiting cases as indicated on the arrows (d layer thickness,
l substrate thickness, l substrate heat conductivity).
for various source terms. A universally applicable solution is
the Green’s function obtained as the thermal response to a
point-like excitation, also called the point spread function
(PSF). Appropriate solutions (either analytical or numerical)
are needed to quantitatively evaluate the measurements in
terms of various material properties or to deconvolute
images of subsurface heat sources or inhomogeneities/
defects.

Here, we present an analytical approach to the heat
conduction problem with cylindrical symmetry, making
thoroughly use of the physical and mathematical properties
of the functions involved. We apply a Hankel transform to
find the PSF in terms of (lateral) spatial frequencies. This
Hankel-transformedPSF turns out to be identical to a transfer
function in the sameway as it is known from optics, therefore
we call it the thermal transfer function (TTF). Using the TTF
has several advantages: analytical solutions for the TTF can
be found for cases where the PSF cannot be determined
explicitly, it is computationallymore efficient to use the TTF
for determining the resulting temperature signal than to
convolute the source distribution with the PSF, and the TTF
provides a well-defined criterion for the lateral resolution of
the thermal imaging process it describes. By choosing
suitable dimensionless variables, this resolution criterion can
be generalized to arbitrary material combinations, providing
a universal description of the transition from thermally thin
to thermally thick behaviour. We encounter the mathematical
necessity to revise the definition of the latter terms, taking into
account the lateral modulation of the thermal signal.

As a prototypical case of a layer-on-substrate system, we
derive the TTF for a thermally thin but highly heat
conductive layer on a substrate whose finite thickness has
to be taken into account; solutions for several other cases
are derived as limiting cases (cf. Fig. 1). Although the
mathematical expression needed to treat such a layer (the
latter being abbreviated as HCL in the following) as a special
boundary condition is already discussed in the famous book
by Carslaw and Jaeger [1], surprisingly, no rigorous solution
of the heat equation for this case is found in the literature.
Maznev et al. [46] as well as Hartmann et al. [18] used the
HCL boundary condition for a semi-infinite substrate, but
implicitly together with a certain random, unrealistic heat
source distribution just suited for obtaining a simple
dispersion relation for the thermal waves. Cole [47, 48] used
a boundary condition for a thin film that only comprises its
heat capacity but disregards the lateral thermal conductivity
inside the thin film.

Instead of a HCL boundary condition a highly heat
conductive layer of finite thickness can be used in the
theoretical description of such a system. This was done, e.g.,
by Reichling and Grönbeck [49], who even treated a double
layer on the surface of a semi-infinite substrate. However,
assuming a surface excitation by a Gaussian laser beam they
obtained quite complex expressions that cannot easily be
used for general purposes, and although their solutions
include the lateral dependency, this is neither displayed nor
discussed in the remainder of their work. In contrast,
www.pss-b.com
Frétigny et al. [19] explicitly discuss the lateral dependency
of the thermal signal using a general expression for a film-on-
substrate system and an arbitrary excitation shape. However,
both their results have two limitations, being inherently
present in their integral kernels: they are restricted to
excitation and detection at the surface, and a semi-infinite
substrate is assumed. No such restrictions are present in our
solutions.

2 Theory
2.1 PSF solution of the heat equation
2.1.1 Geometry and heat equation The geometry

and coordinate system are shown in Fig. 2. The upper surface
is assumed at z¼ 0 and the source at z0 � 0 below the surface.
In the case of a finite thickness substrate [Fig. 1(a) and (c)]
the back surface is at z¼ l, 0 � z0 � l, for thermally thick
substrates [Fig. 1(b) and (d)] it is assumed to be at z¼1. The
highly heat conductive layer at z¼ 0 of thickness d is
assumed to be thermally thin.

A point source qP ¼ d3ðr� r0Þ oscillates at r0 (r¼ 0,
z¼ z0) with excitation angular frequency v and unit
amplitude. The temperature response P to this point-like
source is described by the point spread function (PSF). For
our purposes (excitation frequency smaller than the inverse
of the lifetime of heat-carrying phonons), it is obtained from
the parabolic heat equation, written as
� qPe
ivt

l
¼ DPðr; zÞeivt � 1

D

@

@t
Pðr; zÞeivt
� �

; (1)
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 Geometrical conventions. The substrate of thickness l is
covered with a thermally thin layer of thickness d such that temper-
ature variations in z-direction inside the thin layer can be neglected.
Becauseof thecylindrical symmetry, nopolar anglew is needed.The
source is centred at r¼ 0, depth z0.
where the three-dimensional Laplace operator is denoted by
D and D ¼ l=cp� is the thermal diffusivity with the thermal
conductivity l, specific heat cp and density r. The constants
in Eq. (1) are chosen such that the PSF receives the unit K/W
to reflect its meaning as the temperature profile for a point
source of unit power. Other conventions used in literature
[1, 47, 48, 50] can be traced back to different constants in the
heat equation.

Both source and temperature response have a time
dependency of the form eivt, which cancels from Eq. (1).
A phase shift between source and response is fully expressed
by the argument of the complex-valued function P. Thus the
equation to be solved is
� 20
� qP
l

¼ DPðr; zÞ � iv

D
Pðr; zÞ: (2)
1 Whether a (Kapitza-type) interfacial thermal resistance between HCL and

substrate influences the heat transport to the substrate depends on the

excitation frequency. The substrate layer affected by the thermal wave has

a thickness of � / v�1=2 and a corresponding thermal resistance

R� ¼ �=l. The interface resistance R is negligible as long as R � R�.

Typical values for R can be found in Ref. [53].
2 In the case of a thermally thin layer whose thermal properties vary along

the z-axis, the straightforward substitutions h ¼ l=dlf ! l=
R
z lf ðzÞdz

and Df ¼ cp;f �f =lf !
R
z cp;f ðzÞ�f ðzÞdz=

R
z lf ðzÞdz are appropriate.
2.1.2 Boundary conditions The boundary con-
ditions to the heat equation (2) describe the nature of
the surfaces and how (if at all) heat is exchanged with the
environment. Heat transfer from the medium to the
environment can occur via radiation, conduction and
convection. In most contributions, the effect of heat loss is
tacitly neglected. Some authors made efforts to introduce it
into the functional form of the PSFs [32, 47, 48]. However, to
actually be able to predict heat loss behaviour, it is necessary
to consider surface emissivity variations for radiation, to
measure the thermal contact resistance of conduction to the
sample holder and to solve the Navier–Stokes equation in air
coupled to the time-harmonic heating in the medium for
convective heat loss, as pointed out by Rousset et al. [51].
Therefore, it is either necessary to deal with a significant
complication of both theory and experiment to correctly
describe heat loss behaviour or to move to a regime where it
is negligible. In the following we will assume the latter, a
condition that has been termed ‘quasi-adiabatic’ (@P=@z ¼ 0
at the surfaces) and can be verified experimentally [22] and
theoretically [52].

The HCL boundary condition needed for cases (a) and
(b) is a little more complicated than the simple adiabatic
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
boundary condition for the other surfaces. The highly heat
conductive layer on the surface is assumed to be thermally
thin, the heat conduction in the layer is essentially two-
dimensional (cf. § 1.9 H in Carslaw–Jaeger [1]) according to
D2Pðr; 0Þ þ h
@P

@z
ðr; 0Þ � iv

Df
Pðr; 0Þ ¼ 0; (3)
where D2 is the planar Laplace operator, h@Pðr; 0Þ=@z
describes the heat flux (�lrT jz¼0) between substrate and
layer (assuming zero thermal resistivity between layer and
substrate)1, and h ¼ l=dlf . Index f refers to properties of the
thin film2 of thickness d. This equation describes the heat
conduction in the layer and (implicitly) that no heat is
transferred to the environment and serves thus both as the
heat equation in the thin material and the quasi-adiabatic
boundary condition for the system at z¼ 0. Note that
through the HCL boundary condition (3) a second thermal
diffusion length Lf is introduced. Therefore, the thermal
diffusion length L of the substrate fails to be useful as a
characteristic length of the thermal waves in the presence of
a highly heat conductive layer. We will come back to this
issue in Section 3.3.1.

For a thin layer with a thermal conductivity close to that
of the substrate, the influence of the ‘highly heat conductive
layer’ becomes negligible. If it is lower than that of the
substrate, a temperature drop normal to the layer will
develop, the thin layer will no longer be thermally thin, and
cannot be described appropriately by Eq. (3). Its behaviour is
then that of a thermal resistance.

2.1.3 Reduction to ordinary differential
equation and solution with inhomogeneity The
partial differential equation (2) can be reduced to an ordinary
differential equation by a two-dimensional spatial Fourier
transform (denoted by a tilde; x! kx, y! ky, k

2 ¼ k2x þ k2y ).
In the present case of cylindrical symmetry, it takes the form
of the Hankel transform of order zero [54]:
~Pðk; zÞ ¼ F 2-d½Pðr; zÞ� ¼ H0½Pðr; zÞ�: (4)
The heat equation (2) transforms into an ordinary dif-
ferential equation [54] according to D ¼ D2 þ @2=@z2 !
�k2 þ @2=@z2:
� ~qP
l

¼ �h2 ~Pðk; zÞ þ @2 ~Pðk; zÞ
@z2

; (5)
www.pss-b.com
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[55

and

www
h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iv

D

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2i

�2

r
: (6)
This term occurs naturally when dealing with the Fourier
transformed, time-harmonic heat equation. With the intro-
duction of h, the transformed heat equation (5) shows the
mathematical form of a one-dimensional wave equation in z-
direction, where h takes the place of the wave vector. Since h
depends on k, the wave propagation and damping in z-
direction depends on the spatial frequency in radial direction.

The transformation of the HCL boundary condition (3)
yields
� h2f
~Pðk; 0Þ þ h

@ ~Pðk; 0Þ
@z

¼ 0; (7)
where the formal analogue hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iv=Df

p
is intro-

duced. Note that the equation describing heat transfer inside
the thin layer takes the form of a boundary condition of the
third kind in Fourier space.

To solve the heat conduction problem its (unknown)
solution is split into two parts P¼ uþw, where w solves the
homogeneous heat equationwith free parameters and u is the
solution of the full heat equation (including the source term)
in an infinite medium (no surfaces). The problem is solved if
the free parameters in w are adjusted such that P satisfies
the boundary conditions. The equation for ~wðk; zÞ,
0 ¼ �h2 ~wðk; zÞ þ @2 ~wðk; zÞ=@z2, is solved by ~wðk; zÞ ¼
AðkÞexpð�hzÞ þ BðkÞexpðhzÞ with the free parameters
A(k) and B(k). The function u(r,z), the Green’s function of
an oscillating point source in an infinite medium, is known to
be (cf. § 10.4 VI in Carslaw–Jaeger [1])
PSF TTF LSF
uðr; zÞ ¼ 1

4�l

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv½r2 þ ðz� z0Þ2�=D

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� z0Þ2

q ; (8)
which has a simple Hankel transform:4
PSF TTF LSF
~uðk; zÞ ¼ 1

2l
expð�hjz0 � zjÞ

h
: (9)
Figure 3 (onlinecolourat:www.pss-b.com)Relationshipbetween
If the PSF solution is actually needed in real space, the
inverse Hankel transform of ~Pðk; zÞ ¼ ~uðk; zÞ þ ~wðk; zÞ can
be found numerically by a standard two-dimensional fast
Fourier transform or by specialized algorithms that make
use of the radial symmetry. For most applications, however,
re and henceforth the expression
ffiffiffi
c

p
with a complex number

denotes the principal value of the square root, i.e.,ffi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� expði�Þ

p
¼ ffiffiffi

�
p

expði�=2Þ, with �� < � � �.
is is found by evaluating a variant of Sonine’s second integral, see Ref.

], § 13.47, Eq. (2), setting � ! 0, � ! 1=2, t ! r, b ! k, z ! z� z0

a !
ffiffiffiffiffiffiffiffiffiffiffi
iv=D

p
.

.pss-b.com
the transformed PSF is more useful in itself as will be
detailed in the following Section 2.2.

A rather general but less direct approach can also be
followed to obtain the PSF. If the solution of the
corresponding one-dimensional problem is known, i.e.,
the thermal wave solution for a source that is homogeneous
in the x–y plane, the PSF can be obtained by replacing
the expression iv/D(z) in the one-dimensional solution of the
heat equation by h2ðzÞ ¼ i!=DðzÞ þ k2 and performing the
inverse Hankel transform, as shown in the book of Mandelis
[32], theorem 5.1. The case of a HCL is not present in
Mandelis’ treatment. In fact, following this procedure in the
presence of a HCL does not lead to the desired solution as
essential terms cancel.

2.2 Point spread function (PSF), line spread
function (LSF), and thermal transfer function
(TTF) The point spread function (PSF), P(r, z), is closely
related to two other functions that describe the response of a
system to thermal excitation. These are the line spread
function (LSF), L(x, z) and the thermal transfer function
(TTF), F(k, z). They describe the response to different kinds
of heat sources, visualized in Fig. 3. While the PSF is the
thermal wave response to a point-like heat source at the
source position r0 (r¼ 0, z¼ z0), the LSF is the response to a
line heating source parallel to the surface at z¼ z0, x¼ 0
(without loss of generality). The concept of the TTF is
borrowed from optics [56] where it appears as the (complex)
optical transfer function (OTF). It can be defined through
integral transformations of the PSF and LSF [57]. (We will
discuss its meaning in real space in Section 2.2.2 below.)
PSF, TTF and LSF. Heat sources and thermal waves related to the
three functions are illustrated for a thermally thick medium. The
heatingpowerdensity is shownasa redsurfacequantity, solidcurves
indicate the resulting thermal wave fronts. As the TTF is defined in
Fourier space only, the image shows its effect on a single Fourier
component in real space, see Section 2.2.2. In the case of radial
symmetry of the PSF, all three functions contain the same informa-
tion and can be calculated from each other using Hankel (H0) and
Fourier (F ) transforms.

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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� 20
Fðk; zÞ¼ F½Lðx; zÞ�

¼
Z 1

�1
Lðx; zÞexpð�ixkÞdx;

(10a)
Lðx; zÞ¼ F�1½Fðk; zÞ�

¼ 1

2�

Z 1

�1
Fðk; zÞexpðixkÞdk;

(10b)
Fðk; zÞ¼ H0½Pðr; zÞ�

¼ 2�

Z 1

0

Pðr; zÞJ0ðrkÞrdr;
(10c)
Pðr; zÞ¼ H�1
0 ½Fðk; zÞ�

¼ 1

2�

Z 1

0

Fðk; zÞJ0ðrkÞkdk:
(10d)
(J0 is the Bessel function of the first kind of order zero.)
From Eqs. (10a–d) it is clear that PSF/TTF is a Hankel

transform pair in r/k and LSF/TTF a Fourier transform pair in
x/k. Comparing Eq. (4) to (10c) it is also apparent that ~P from
Section 2.1 is the TTF:
~Pðk; zÞ � Fðk; zÞ: (11)
In addition to the Fourier and Hankel transform formulas
involving the TTF above, it is also possible to calculate the
LSF directly from the PSF in a straightforward way (even
vice versa [57, 58]):
Lðx; zÞ¼
Z 1

�1
Pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; zÞdy

¼ 2

Z 1

x

Pðr; zÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p dr:

(12)
No information is lost through these integral transforms;
PSF, TTF and LSF all contain the same information.

2.2.1 Convolution and deconvolution In order to
understand the meaning of the TTF consider the case of a
planar heat source Q(x, y) (given in Wm�2). Then, the
corresponding temperature field at depth z is obtained from
the two-dimensional convolution integral of the PSF P(r, z)
with Q(x, y), both at depth z0:
Tmðx; y; zÞ¼
ZZ

Pðr0; zÞQðx� x0; y� y0Þdx0dy0

¼ Pðr; zÞ � Qðx; yÞ;
(13)
with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. By the convolution theorem [54], this

convolution corresponds to a multiplication in Fourier
space. The two-dimensional Fourier transform of the PSF is
the TTF, Eq. (14), and the Fourier transform of the source
power distribution ~Q needs to be calculated numerically for
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
most cases (with the important exception of Gauss profiles):
~Tmðkx; ky; zÞ ¼ Fðk; zÞ ~Qðkx; kyÞ: (14)
For all cases except simple ‘thermally thin’ and
‘thermally thick’, only the TTF (but not the PSF and LSF)
can be found as a simple expression (see Section 3.2).
However, calculating the convolution via two Fast Fourier
Transforms and a simple multiplication (14) is computa-
tionally more efficient [59] than the direct calculation
following (13) [OðNlogNÞ vs. OðN2Þ]. Deconvolution
procedures like Wiener optimal filtering [59] also operate
in Fourier space. Thus, it is actually fortunate that simple
analytical expressions are found for the TTF and not the PSF
and LSF in Section 3 below.

2.2.2 The TTF in real space Until now, the TTF was
only introduced as the Hankel transform of the PSF (i.e., the
two-dimensional Fourier transform in the x–y plane) and the
Fourier transform of the LSF. We shall now describe its
physical meaning in real space.

The Fourier transform of the heat source distribution
Q(x, y) (at depth z0) decomposes the source into its spatial
frequency components. If we pick one at a certain spatial
frequency vector k ¼ ðkx; kyÞ it corresponds to
Qkðx; yÞ ¼ a exp½iðkxxþ kyyÞ�;

a ¼
~Qðkx; kyÞ

4�
dkxdky

(15)
in real space (heating in Wm�2 at depth z0). Due to the
linearity of the system and as described by the convolution
theorem (14) this Fourier component of the heating source
causes a temperature response at the same spatial
frequency k:
Tkðx; y; zÞ ¼ Fðk; zÞQkðx; yÞ: (16)
This means that the absolute value and argument of the
(complex-valued) TTF F(k, z) for a given spatial frequency
vector k at observation depth z is the response-to-excitation
modulation amplitude ratio and phase shift, respectively.
The thermal wave pattern Tk(x, y, z) that results from the
heat source Qk(x, y) at z

0 ¼ 0 is shown in Fig. 3 to illustrate
this real-space meaning of the TTF. The thermal response
for the important limiting case of homogeneous planar
excitation can be calculated easily from the TTF since this
can be viewed as an excitation of spatial frequency k¼ 0.

Since the TTF for a given spatial frequency is a complex
number, it causes a phase shift between the sinusoidal
heating pattern Qk(x, y) and the thermal response Tk(x, y, z).
This phase shift can be thought of as a spatial shift in the x–y
plane between excitation and response patterns or as a
temporal shift; both views are mathematically equivalent.
This ambiguity in the real-space meaning does not occur for
the PSF (and LSF). There the argument of the complex-
valued function is clearly the time-lag between excitation
and the thermal response at the observation point.
www.pss-b.com
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Table 1 TTFs for cases (a) through (e) in Fig. 1.

Case F(k, z)a F(k)b

(a) HCL on finite substrate cosh hðl�z0Þ
�h

h2f sinhhzþ hhcoshhz

h2f coshhlþ hhsinhhl

1

�

hcoshhl

h2f cosh hlþ hhsinhhl

(b) HCL on thermally thick e�hz0

�h

h2f sinhhzþ hhcoshhz

h2f þ hh

1

�

1

h2f =hþ h

(c) finite substrate cosh hðl�z0Þ
�h

cosh hz

sinh hl

1

�h
coth hl

(d) thermally thick expð�hz0Þ
�h

cosh hz
1

�h
(e) thermally thin – 1

d�f

1

h2f

aGiven for observation above source (z � z0), z and z0 change place for z> z0. bFðk; zÞ for z ¼ z0 ¼ 0.

5 Both conditions can be seenmost clearly in the limits from case (c) to cases

(d) and (e).
There are two main differences in the application of the
transfer function concept to the heat conduction problem and
its use in optics. Firstly, in optics for incoherent illumination,
phase information is unimportant and only the real-valued
modulation transfer function (MTF) needs to be considered,
while the phase information in the TTF is essential. Another
important difference is that for theMTF in optics both source
and image are intensity functions whereas for the TTF the
source is a power density distribution in units of Wm�2 and
the image a temperature distribution in units of K. Therefore,
the MTF is dimensionless and the TTF has the dimension
Km2W�1.

A thermal analogue of such an MTF was introduced in
the context of pulsed thermography by Shepard et al. [60, 61]
and Krapez [62] as the temperature or image contrast
obtained from a resolution test object. Another transfer
function approachwas proposed byMandelis [63]. Designed
for photothermal-wave diffraction, his thermal-wave trans-
fer function relates the (complex) temperature distributions
at the aperture plane and at the observation plane; thus, this
type of transfer function is dimensionless like the MTF.

3 Results
3.1 Transfer function results It is possible to

calculate the TTFs for cases (a) through (e) following the
procedure outlined in the previous section for each case. It is,
however, more efficient to start with the mathematically
most complex case (a) and specialize the result as limiting
cases according to the arrows in Fig. 1; results are given in
Table 1.An important special case is that of a source on top of
the sample (or inside the thin layer covering the sample) and
of a temperature modulation signal observed at the topmost
layer. Then z’¼ z¼ 0 and the expressions simplify con-
siderably, these TTFs are also given in the table. Using the
expressions from Table 1 together with the integral trans-
forms (10a) through (10d), a large subset of thermal wave
experiments can be modelled conveniently.

Performing the limits to thermally thin or thermally thick
behaviour (l! d, l!1 in Fig. 1) it is found that the
thermally thin approximation is approached only if jhlj � 1.
It is not approached if the layer is just thin compared to the
www.pss-b.com
thermal diffusion length, l=� � 1. Similarly, the thermally
thick approximation is found for jhlj � 1.5 Through the term
h, these expressions depend on the lateral modulation with
spatial frequency k¼ 2p/s, where s represents the feature
size that is evaluated,
hl ¼ 2i
l

�

� �2

þ 4�2 l

s

� �2
" #1=2

: (17)
The requirement jhlj � 1 for thermally thin behaviour
consists thus of two necessary conditions. The first
condition is the classical definition of the term: a thermally
thin layer is much thinner than the thermal diffusion length
in the material, l=� � 1. This condition is not sufficient for
inhomogeneous heating, hl is not negligibly small if highly
detailed samples are investigated (corresponding to high
spatial frequency components). Therefore in addition to
l=� � 1 also l=s � 1 needs to be given for thermally thin
approximations to be valid. As an illustration of this
condition consider a point-like heat source on top of a
l¼ 0.2mm thick silicon wafer at an excitation frequency of
1Hz. The thermal diffusion length is L¼ 5.4mm, such that
the condition l � � is well satisfied. Obviously though, the
resulting temperature field closer than 0.2mm to the point
source will not be ‘essentially two-dimensional’ as
supposed by the thermally thin approximation. The
temperature field at a distance from the point source large
compared to the thickness, in contrast, is well described by
the thermally thin approximation, i.e., neglecting the
z-dependency of the temperature field. Thus, the question
is not whether a sample is thermally thin at a certain
excitation frequency but rather if all relevant spatial
frequency components of the signal can be described
sufficiently well by assuming the sample to be thermally
thin.

The same reasoning leads to an extension of the
traditional definition of ‘thermally thick’. Thermally thick
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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behaviour is not only present if l � � but also if very small
features are under investigation.

The case of a slab of finite thickness (c) given in the table
was already treated by several authors [22, 32, 47, 48, 50].
These discussions are based on the argument of mirror heat
sources (cf. § 10.10 in Carslaw–Jaeger [1]) in real space that
leads to an infinite sum of terms in the form of Eq. (8).
Compared to this infinite sum, using the expression for the
TTF in Fourier space is obviously computationally advan-
tageous. The expression forF(k) of case (c) given in the table
was already used implicitly by Salazar et al. [64] to arrive at
their formula for the response to a Gaussian beam heating a
finite thickness sample (given in Appendix A of their
contribution). The case of a highly heat conductive layer of
finite thickness on a thermally thick substrate and for
z ¼ z0 ¼ 0 was treated by Frétigny et al. [19], using a
different convention for the units. It can be easily shown that
their integral kernelT converges to our expression forF(k) of
case (b) in the limit of thermally thin behaviour of the layer.

3.2 Explicit results for the PSF and LSF for the
thermally thin and thick cases Explicit expressions for
PSF and LSF are possible for thermally thin and thermally
thick homogeneous media. These expressions are widely
used in the literature and are given here for completeness. In
all other cases, simple analytical expressions are only found
for the TTF. In case the evaluation cannot be done in the
Fourier domain, the inverse transform to PSF and LSF
according to Eqs. (10) b and d has to be done numerically.

For the thermally thin case (e) one has an integral of
Hankel type (cf. § 13.51, Eq. (5) in Ref. [55]):
� 20
PeðrÞ¼
1

2�dlf

Z 1

0

kJ0ðrkÞ
h2f

dk

¼ 1

2�dlf
K0 r

ffiffiffiffiffiffi
iv

Df

s !
;

(18)
with the modified Bessel function of second kind and order
zero K0. For the thermally thick case (d) the integral can be
solved applying the relation already used for Eqs. (8), (9):
Pdðr; zÞ¼
1

2�

Z 1

0

e�hz0

2lh
ehz þ e�hzð ÞkJ0ðrkÞdk

¼
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv½r2 þ ðz� z0Þ2�=D

q� �

4�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� z0Þ2

q

þ
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv½r2 þ ðzþ z0Þ2�=D

q� �

4�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ z0Þ2

q :

(19)
(Given for z � z0; switch z and z0 for z0 < z .) The two terms
in Eq. (19) can be interpreted as the source at z0 and its
‘mirror heat source’, reflected at the sample surface to
satisfy the boundary condition @P=@zðr; 0Þ ¼ 0, cf. § 10.10
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
in Carslaw–Jaeger [1]. The expressions (18) and (19) are
well-known and given, e.g., by Breitenstein et al. [22] and
by Mandelis [50] (called three-dimensional semi-infinite
and two-dimensional Green’s function there, using a
different convention for the unit of the PSF).

The expressions for the LSFs are
LeðxÞ ¼
1

2dlf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
iv=Df

p exp �jxj
ffiffiffiffiffiffi
iv

Df

s !
(20)
for the thermally thin case (e) and
Ldðx; zÞ ¼
1

2�l
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv½x2 þ ðz0 � zÞ2�

D

s0
@

1
A

þ 1

2�l
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv½x2 þ ðz0 þ zÞ2�

D

s0
@

1
A

(21)
for the thermally thick case (d). The line heating source is
assumed at the line x¼ 0 in both cases. This agrees with
expressions found in literature (e.g., in a contribution by
Cole [47, 48], using a different convention for the unit of
the LSF). The similarity between the LSF in a thick
medium (21) and the PSF in a thin medium (18) is no
coincidence as both problems are two-dimensional [22, 50].
Similarly, the LSF for the thermally thin case (20) is the
solution to a one-dimensional problem and corresponds to
the propagation of a planar thermal wave into a semi-infinite
medium [1].

3.3 Spatial resolution and phase
3.3.1 Spatial resolution The temperature profile in

the detection plane resulting from periodic excitation of a
sample follows the lateral heating power distribution. Thus
the temperature profile in the detection plane can be seen as a
blurred image of this heating power density. When this
temperature profile is mapped using any method, e.g., an IR
camera or a scanning temperature sensor, the image of the
power distribution will be blurred again.

Therefore, the step from the heating power distribution
to the temperature profile (calculated using the TTF)
may be viewed as the first in a series of imaging steps
(each with a characteristic transfer function) from the
source to the measured signal, where in each step a certain
amount of information about the lateral heating power
distribution is lost. In many cases, this loss of detail is
dominant for the very first step, i.e., the resolution in imaging
the heat source is most significantly lowered through
heat conduction in the sample from the heat source to the
surrounding material.

In combined systems of highly heat conductive layer and
substrate, the traditional way of assessing the lateral
resolution of the temperature profile with the thermal
diffusion length [22] is no longer valid. This is because
these systems have two different thermal diffusion lengths,
L of the substrate and Lf of the film, which may differ
www.pss-b.com
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considerably. Another resolution criterion for these systems
is thus needed.

The heat generation in a sample may contain very high
spatial frequencies. For example a short circuit in an
electrical device produces heat very locally (diameters
typically less than 10mm). The high spatial frequencies
associated with such a source are not present in the thermal
signal. This is because the TTF acts as a low-pass filter that
filters out high spatial frequency components (i.e., infor-
mation about details).

The cutoff (spatial) frequency of the TTF thus gives a
convenient resolution criterion if the resolution is in fact
limited by the spreading of heat. Here we follow the usual
convention of defining the cutoff frequency kc as the
frequency where the amplitude has dropped to 1

� ffiffiffi
2

p
of its

value for homogeneous excitation (k¼ 0), corresponding to
an attenuation of 3 dB:
www
jFðkcÞj¼ jFð0Þj=
ffiffiffi
2

p
;

sc ¼ 2�=kc:
(22)
That means a resolution test object with heater lines with a
line-to-line spacing of sc will show a temperature contrast
which is a factor of 1=

ffiffiffi
2

p
	 0:71 worse than for a spacing of

s � sc. This cutoff wavelength sc is proposed as a measure
of the lateral resolution of the data about the heat sources in
the temperature field.

For NDE applications, apart from the geometry of a
defect, its depth is of particular interest. It is found that the
phase signal carriesmost information about the depth [23]. A
theoretical treatment of the achievable depth resolution,
however, is beyond the scope of this contribution.

The proposed criterion for the lateral resolution in
thermal imaging can be compared to the thermal diffusion
length in the thermally thick case (d), and thermally thin case
(e), see Table 1, by solving the resolution equation (22) for sc
and substituting the thermal diffusion length:
sthickc ¼
ffiffiffi
4

3

4

r
�� 	 3:38�; (23)
sthinc ¼
ffiffiffi
2

p
�� 	 4:44�: (24)
Figure 4 (online colour at: www.pss-b.com) Complex TTF for a
system of 1.5mm silicon on a thick glass substrate at 10Hz. The
cutoff spatial frequency of kc of this system corresponds to a
resolution of sc¼ 1.4mm. (Heat source and signal observation at
the surface.)
The resulting sc is directly proportional to the thermal diffusion
length but with differing factors for the two cases. Hence in
two samples of the same material, one thermally thick, the
other thermally thin, the resolution will be assessed to be
slightly better on the thermally thick sample by the cutoff
frequency criterion. For all the other cases (22) has to be solved
numerically, which is a simple task for today’s computers.

The value of the cutoff wavelength sc might also serve as
a replacement of the thermal diffusion length as a
characteristic length of the temperature field in radial
direction, just as the thermal diffusion length in a
homogeneous medium is useful both as a characteristic
dimension of thermal waves and as a resolution criterion for
.pss-b.com
imaging heat sources through the temperature modulation
field.

As an illustrative example for the proposed resolution
criterion, consider the silicon on glass structure investigated
in the experimental Section 4.1 below. It is essentially a
1.5mm thick fully (poly-)crystalline silicon film on a thick
borosilicate glass substrate (which differ in thermal diffusion
length by a factor of 12). Figure 4 shows its (complex) TTF
for an excitation frequency of 10Hz; heat source and signal
observation at the surface. Also the derived cutoff frequency
is shown. As expected, the corresponding resolution of the
combined system sc¼ 1.4mm is between that of the silicon
alone (sthinc ¼ 7:8 mm) and that of the glass alone
(sthickc ¼ 0:5 mm).

Figure 5(a) shows the frequency dependence of the
resolution parameter sc in the silicon on glass system
compared to that of heat propagation in the thermally thick
glass and in the silicon layer, respectively, as if these were
not coupled. It can be seen that the system approaches
thermally thin behaviour for very high frequencies (as the
penetration depth into the glass diminishes) and thermally
thick behaviour for very low frequencies. In the transition
region, the slope of the curve is less steep than that of those
for both thermally thin and thermally thick approximations.
In the double logarithmic plot, the slope is 	 �1=4
compared to �1/2 of both limiting cases. That means that
in this transition region doubling the excitation frequency
improves the resolution not by a factor of 21=2 	 1:41 but
only of 21=4 	 1:19. A generalized version of this plot is
possible and will be described in Section 3.3.3.

A graph similar to Fig. 5(a) was derived byMaznev et al.
[46] considering a HCL on a thermally thick substrate. They
solved the heat equation using an ansatz that corresponds
implicitly to a certain arbitrary heat source distribution in the
y–z plane. Then they interpret a term in the resulting solution
as a horizontal wave number, which gives a characteristic
length of horizontal heat propagation. Although this
characteristic length shows a qualitatively similar behaviour
to sc, the generality of their approach remains questionable.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(a)

(b)

Figure 5 (online colour at: www.pss-b.com) Resolution (a) and
homogeneous signal phase (b) for a CSG sample over a broad range
of excitation frequencies (signal and heat source at the surface). The
limiting cases thermally thin and thermally thick are plotted for
comparison. The approximation of a thermally thin layer on a
thermally thick substrate is invalid in the shaded regions, see text.
Resolution values taken from Fig. 5 are only valid if the
assumptions made in the derivation of case (b) are still
fulfilled (see the discussion in Section 3.1). For the substrate
to be thermally thick it is sufficient to check if �ðf Þ � l at
frequency f ¼ v=2�. (The other sufficient condition for
thermally thick behaviour s � l can never be fulfilled for all
s ranging from sc to1, that are evaluated for the resolution
criterion.) For the highly heat conductive film to be thermally
thin s � d must be fulfilled down to sc � d as well as
�f ðf Þ � d. These three conditions can be conveniently
checked in Fig. 5 by drawing two vertical lines at the
frequencies �ðf Þ ¼ l and �f ðf Þ ¼ d and one horizontal line
at sc¼ d (this is not critical in the present case). The shaded
regions beyond these lines in the figure indicate values of sc
where the conditions for these approximations are clearly
violated.

3.3.2 Signal phase Additional interesting infor-
mation can be found from the TTF. A homogeneous source
has a spatial frequency of zero. Thus, the absolute value and
argument of the TTF at k¼ 0 are the amplitude (a value in K
temperature modulation per Wm�2 heating power density)
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and phase of the temperature modulation signal resulting
from the excitation by a homogeneous source.

For thermally thick and thin samples this phase is known
to be �45 and �908, respectively [22]. This homogeneous
signal phase is plotted in Fig. 5(b) for the silicon on glass
sample described above. Note that the transition from
thermally thick to thermally thin behaviour occurs at higher
excitation frequencies for the homogeneous signal phase
than for the resolution parameter. The reason is that the TTF
is evaluated at different spatial frequencies k¼ 0 and k¼ kc,
respectively, and low spatial frequencies tend to be less
influenced by the presence of the HCL.

3.3.3 Generalized plot of resolution and
phase The resolution and phase information that is
available through the TTF for the case of a HCL on an
infinite substrate can be presented in a more general fashion
than shown in Fig. 5 by summarizing all possible material
combinations using appropriate dimensionless parameters.

For that, it is helpful to make a simple estimation of the
ratio of heat transported laterally through the thin layer and the
substrate. Consider the heat flow from a point source on top of
the sample through a cylinder around this point source of a
radius small compared to the thermal diffusion length in both
thin layer and substrate. The heat transported through the layer
to the cylinder should be proportional to its thermal
conductivity lf and thickness d. Although the substrate is
assumed to be infinitely thick, the heat will only be transported
down to a depth proportional to the thermal diffusion length in
the substrateL. The ratio vofheat transport through the layer to
that through the substrate can thus be estimated as
v ¼ lf d
l�

¼
ffiffiffiffiffiffiffiffiffiffiffi
v

2h2D

r
: (25)
If our estimation makes sense physically, v should be a
suitable dimensionless substitute for the excitation frequency
v. To make the resulting graphsmore intuitive, however, it is
desirable to use a variable that is directly proportional to the
frequency. Also, the factor of two should be insignificant and
will be dropped to simplify the equations. We therefore
define the dimensionless frequency v0:
v0 ¼ 2v2 ¼ v

h2D
: (26)
Applying Eq. (22) for the present case of a thermally thin
layer on a thermally thick substrate with source and
observation at the surface and substituting v by the
dimensionless v0 gives
iv0 D

Df
þ k2c
h2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv0 þ k2c

h2

r					
					

¼
ffiffiffi
2

p
iv0 D

Df
þ

ffiffiffiffiffiffi
iv0

p				
				: (27)
The form of this equation motivates the introduction of two
more dimensionless variables, the ratio of the diffusivity in
www.pss-b.com
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the HCL to that in the substrate D0 (D0 > 1) and the
dimensionless lateral resolution k0c, s

0
c:
(a)

(b)

Figu
para
vari

www
D0 ¼ Df

D
; k0c ¼

kc
h
; s0c ¼

2�

kc0
¼ hsc: (28)
With these substitutions (27) reads
iv0=D0 þ k0c2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iv0 þ k0c2

p		 		
¼

ffiffiffi
2

p
iv0=D0 þ

ffiffiffiffiffiffi
iv0

p			 			: (29)
The homogeneous signal phase (see Section 3.3.2) can also
be expressed in these dimensionless variables, giving
argFbð0Þ ¼ arg
1

iv0=D0 þ
ffiffiffiffiffiffi
iv0

p
 !

: (30)
It is now straightforward to plot resolution and phase of
every relevant system of HCL on thermally thick substrate.
This plot is shown in Fig. 6.

As discussed in Section 3.3.1, care has to be taken that
the highly heat conductive layer is in fact thermally thin and
that the substrate is in fact thermally thick at the given
frequency.
re 6 (online colour at: www.pss-b.com) System resolution
meters0c (a)andhomogeneoussignalphase(b) fordimensionless
ables. (Signal and heat source at the surface.)
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4 Experimental To confirm the theoretical calcu-
lations experimentally, three samples corresponding to the
cases (a) through (c) in Fig. 1 were prepared. The
corresponding LIT setup is shown schematically in Fig. 7.
The surface of all samples is electrically conductive and
connected to ground. A point-like heat source is realized by
Joule heating at the electrical contact resistance between
conductive surface and tip. The tip scratches through a layer
of black spray paint applied to all samples for high and
homogeneous emissivity. The samples are such that the Joule
heating caused by the current flow from the tip location to
ground is negligible.

Some of the heat that is generated at the contact
resistance does not contribute to the thermal wave but is
directly carried away by themetal tip. This does not influence
the overall shape of the PSF to be measured, but introduces
significant uncertainty about the amplitude of the PSF.
Therefore, it is not possible to validate the constant factor of
the PSF experimentally using this arrangement and the
amplitude is treated as a free parameter for all measured
curves.

The samples are heated by a square-wave voltage with
excitation frequency f. As heating is always positive an initial
heating-up phase is needed until the elevated temperature of
the sample causes a heat flux to the environment which
compensates the average heating through the excitation.
(This does not influence the measured PSF as long as quasi-
adiabatic conditions are given. This has been checked using
the theory outlined in Ref. [52].) In the quasi steady state
established after the initial heating-up phase is completed,
the temperature variation on every point of the surface shows
frequency components at f and higher harmonics due to the
square-wave excitation. This variation is detected by an IR
camera whose frame rate is phase-coupled to the excitation.
Each frame is weighted with a sine and cosine correlation
function filtering out the first harmonic (provided that more
control unit

IR
cam.

sample

power
supply

control unit

data

f

f

f

Figure 7 Setup for the measurement of the PSF. Current source,
control unit and IR camera are part of Thermosensorik’s TDL 640
systemwithanInSbdetectoroperating inthe3–5mmmid-range.The
point-like source is realized through Joule heating at the tip contact
resistance to the sample (indicated by a white spot).

� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 8 (onlinecolourat:www.pss-b.com)ThecomplexLSFofa
1.5mm silicon film on 3mm of glass at 2.9Hz, compared to the
theoretical limits of thermally thick heat conduction in the glass
alone and thermally thin heat conduction in the silicon alone. Due to
the low area heat capacity of the thin silicon layer, the resulting
temperature values for this model calculation are very high (shown
scaled down in the graph).
than about ten frames per period are acquired). The result of
the lock-in process is the amplitude and phase of the
temperature variation (i.e., its complex amplitude) of every
point of the image of the sample. For details about the initial
heating-up phase and the principle of LIT, see Ref. [22].

From the images both the PSF as well as the LSF are
readily available. The PSF is found as a line-scan from the tip
outwards at any angle, the LSF by integrating the image
according to Eq. (12). This integration of line-scans can
easily be done in an image manipulation tool and has the big
advantage of using much more of the originally acquired
data, thus improving the signal-to-noise ratio. We will
therefore use the LSF in the following evaluations.

Wewill start with cases (b, thermally thick substratewith
HCL) and (c, neither thermally thick nor thin sample). The
theoretical complications of a HCL and a finite thickness
substrate combined give case (a).

4.1 Case (b): silicon on glass The sample is a
cutting taken from a practical example, a CSG solar module.
For the CSG (crystalline silicon on glass) technology a layer
of amorphous silicon is deposited on a 3mm borosilicate
glass substrate. This amorphous material is recrystallized in
an oven for several hours to form a 1.5mm layer of fully
(poly-)crystalline material with a radial grain size of
approximately 2mm with no amorphous fraction left [65].
For this grain size and ambient temperature, the thermal
properties of the material are close to the bulk silicon
properties [66]. For optimal results, all further solar module
processing steps (glass texturization, laser groove cutting,
contacting) were left out. The measurement was performed
for 2 h at a lock-in frequency of 2.9Hz (which is well in the
transition region from thermally thick to thermally thin
behaviour, see Fig. 5) and with 1V, 0.6mA; sheet resistance
	500V&.

Figure 8 shows the real (08) and imaginary (þ908) LSF
of the experiment, compared to the corresponding theoretical
results. The experimental curve follows the theoretical
curve, only very close to the centre the shading through the
heating tip itself is visible. For comparison, the thermally
thick limit (only glass) and the thermally thin limit (only
silicon) are also shown. The thermally thin curve needed to
be scaled down by a factor of 2000 because of the low heat
capacity of a 1.5mm thin film.

4.2 Case (c): thick silicon Case (c) is important for
material that is neither thin nor thick compared to the thermal
diffusion length or for very high spatial frequencies in thin
material. To avoid experimental difficulties connected with
high resolution detection, a thick slab of silicon was chosen
to test the validity of the calculations. The sample is a cutting
from an experimental multicrystalline solar silicon ingot
originally intended for crystal quality assessment. Its grain
size is in the order of centimetre and its impurities and crystal
defects do not affect the thermal properties appreciably.

The measurement was performed for 30min at a lock-in
frequency of 2.9Hz, where the thermal diffusion length is
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
L¼ 3.2mm,which is neither small nor large compared to the
sample thickness of l¼ 2.15mm. The excitation voltage and
current were 19V, 2mA at a silicon resistivity of
	 1:5 � cm.

Figure 9 shows the real (08) and imaginary (þ908) LSF
of the experiment, compared to the corresponding theoretical
results as well as the thermally thick and thin cases. Again
agreement between experimental and calculated curve is
excellent. A small deviation is visible in the imaginary part of
the signal at a distance of 10mm from the centre. It is due to
reflections of thermal waves at the edges of the sample that
was only 2.2 cm wide.

4.3 Case (a): silver on a thin glass slide This is
both theoretically and experimentally themost difficult case.
Therefore a specialized sample was prepared such that both
the effect of the HCL and the finite thickness of the substrate
are simultaneously visible. The substrate is a 1mm thick
microscope slide (2.5 cm wide) made of optical crown glass.
On this substrate a layer of 200 nm silver was evaporated
(	80mV&).
www.pss-b.com
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Figure 9 (onlinecolourat:www.pss-b.com)ThecomplexLSFofa
2.15mm thick slab of silicon at 2.9Hz, compared to the theoretical
limitsof thermally thickand thinheatconduction.Note the transition
from thick to thin behaviour in the 08-signal at increasing distances
from the centre. A small deviation from theory is observed in the
imaginary part of the signal due to reflections at the sample edge.

Figure 10 (onlinecolourat:www.pss-b.com)ThecomplexLSFof
a 200 nm silver film on 1mm of glass at 0.06Hz, compared to cases
(b) and (c).
The measurement was performed for 4.5 h at a lock-in
frequency of 0.06Hz and with 0.5 V, 85mA. Figure 10
shows the real (08) and imaginary (þ908) LSF of the
experiment. At this very low frequency, the sample substrate
is no longer thermally thick for all spatial frequency
components, �ð0:06 HzÞ ¼ 1:8 mm. The silver film is
highly heat conductive and influences the heat conduction
significantly already at d¼ 200 nm thickness. For compari-
son, the limiting cases of a thermally thin layer on a thick
layer and of a single layer of finite thickness (glass) are also
shown. The behaviour of the sample is clearly intermediate
as expected. The real part of the signal follows the theoretical
curve well. However, the imaginary part deviates signifi-
cantly from theory at 5mm from the centre, i.e., in the low
spatial frequency components. Our estimations show that
this should be due to heat conduction from the back surface to
the sample holder, which gets more effective for low spatial
frequencies and at low excitation frequencies.

5 Conclusions We have solved analytically the pro-
blem of thermal wave propagation in a homogeneous slab of
material with a HCL on top by using a transfer function
concept. The resulting theoretical expressions were success-
fully tested experimentally. Also, the limits to the thermally
www.pss-b.com
thin and thermally thick cases give the corresponding
relations widely used in the literature for LIT and photo-
thermal measurement techniques.

Interestingly, the expression for a slab does not converge
to the thermally thin limit if only the classical criterion is
used that takes a sample to be thermally thin if it is much
thinner than the thermal diffusion length in thematerial. That
means that no real sample can in fact be thermally thin.
Instead, it depends on the focus of the specific experiment (or
resolution of the temperature detection) if the thermally thin
approximation is valid or not. Accordingly, new definitions
of the terms thermally thin and thick were proposed.

Our theoretical treatment of the heat conduction problem
leads to a mathematically rigorous introduction of the
complex-valued thermal transfer function, TTF, which has a
much simpler mathematical form than the point or line
spread function. Combined with the efficiency of numerical
Fourier transforms, it is thus computationally advantageous
to use the TTF to deconvolute thermal signals. Physical
interpretation of the TTF as a spatial cutoff filter has lead us
to a resolution criterion in thermal imaging that is proposed
as a replacement of the thermal diffusion length in the case of
layered systems. For the specific case of a HCL on top of a
thermally thick substrate, that is often found in applications,
a generalized plot of resolution and phase was developed.
Furthermore, the analogy to the fully developed field of
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fourier optics expressed through the TTF may lead to
interesting new results for thermal wave investigations. The
TTF approach developed here is directly applicable for all
steady periodic heat conduction problems in radially
homogeneous, layered media.
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