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ABSTRACT We report on a generalized approach for the calcu-
lation of optical properties of various porous semiconductors.
The presented methodology provides a simple method for pre-
dicting the type and value of optical anisotropy in different ma-
terials. Specifically, the cases of electrochemically etched meso-
porous Si on (110)-oriented substrate and electrochemically-
etched porous InP and GaAs materials on (100) substrates are
considered. The optical anisotropy of mesoporous Si is ex-
plained and the dependence of the optical birefringence of this
material on various material parameters is obtained. The optical
anisotropy of porous InP and GaAs with crystallographic pores
is predicted based on the presented model.

PACS 78.20.-e; 78.20.Bh; 78.20.Ci; 78.20.Fm; 78.30.Fs;
78.55.Mb

1 Introduction

Engineering the optical properties of a given ma-
terial by suitable modifications of its structure is a very at-
tractive area of science and technology. Porous semiconductor
materials (see, for example [1] and references therein) are
important cases of such structured “metamaterials”. Semi-
conductors are usually turned porous by electrochemical (or
photoelectrochemical) etching of the nonporous semiconduc-
tor substrates in some suitable electrolytes. To date, it has been
shown that many types of semiconductors can be made in
a porous form by this method. The most popular example is
porous silicon, which allows the tailoring of the pore geom-
etry from micropores (pore diameters below 2 nm; often re-
ferred to as “nanopores”), via mesopores (pore diameters be-
tween 2–50 nm) to macropores (pore diameters above 50 nm).
Electrochemically etched pores have also been obtained in Ge
and III-V compound semiconductors, e.g., InP, GaP, GaAs,
GaN; and porous layers with many kinds of morphologies
could be demonstrated [1]. The usefulness of such materials
for various optical components was already outlined in [2–5].
In most cases the research has been devoted to the isotropic
properties of porous semiconductors. However, recently it
has been shown [6–9] that mesoporous silicon obtained from
a (110) oriented substrate offers optical anisotropy proper-
ties that may be of practical importance. A remarkable result
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is that in the infrared spectral range such a metamaterial of-
fers larger values of optical birefringence than that of any
commonly known natural material. Further, the combination
of the value of the birefringence in the mid-to far infrared
range with the transparency of these materials at the men-
tioned wavelengths makes these findings even more attractive
for possible applications and theoretical studies.

In this paper we present a method, which provides an-
swers to the following questions: What other porous materials
can offer optical anisotropy? What kind of optical anisotropy
can be expected from different porous materials? How can
this anisotropy be controlled by material parameters (such as
the porosity of materials, crystal orientation of the substrate,
etc.)? In addition, our theoretical method could help to de-
velop a more direct understanding of the optical effects, which
is clearly lacking so far.

A method is presented for calculating the effective dielec-
tric constants and refractive indices of different porous mate-
rials. We apply this method to several materials, already suc-
cessfully fabricated by an electrochemical etching process of
different semiconductors. Previously [5–7], the generalized
Bruggeman method [10] was used for calculations of the op-
tical effects in these materials. This method, while providing
fair estimates for mesoporous (110)-oriented Si, is not appli-
cable for more complex structures, employing e.g., multiple
pore lattices, or for materials containing pores with noncircu-
lar cross sections. Moreover, even for the case of mesoporous
silicon, which consists of a network of pores with circular
cross sections growing in some preferential directions, the
generalized Bruggeman method was not sufficient to provide
a full and correct explanation for some of the observed effects.
Looyenga formulation [26] was also applied to calculations
of effective dielectric constants of porous silicon [27], how-
ever, this method is not applicable to the case of anisotropic
medium. The method presented here has the capability to ana-
lyze such structures. The porous semiconductor medium is
treated as macroscopically homogeneous and is assigned a di-
electric permittivity tensor. Effective dielectric permittivity
tensor elements depend on the dielectric constant of the semi-
conductor host, the dielectric constants of pore-filling materi-
als, the pore shape, orientation and filling fraction (porosity).

2 Effective permittivity tensor calculations

In order to implement the effective medium ap-
proximation, several assumptions have to be made, which also
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indicate the limitations of the model presented here. First,
pores are represented by “air voids”; e.g., by air-filled cav-
ities with elliptical shapes; cf. Fig. 1. Second, it is assumed
that these air voids are uniformly and randomly distributed
in the semiconductor material such that the air voids be-
longing to one of M lattice subsets have their axes essen-
tially parallel to each other. Third, it is assumed that the
bulk semiconductor material is isotropic and has a relative
dielectric permittivity εB. Next, it is assumed that neighbor-
ing pores or air holes, respectively, affect each other only
through the depolarization factor. This is a strong assump-
tion that limits the validity of the method to relatively small
porosities. It should be noted, however, that while this lat-
est assumption is not strictly correct for some porous semi-
conductor materials, the accuracy of the approximation pre-
sented here is still good enough for a basic understanding of
the optical effects taking place in such materials. Finally, we
also assume that the wavelength of the electromagnetic wave
considerably exceeds the cross sectional dimensions of the
pores.

An electromagnetic wave with the electric field vector E
gives rise to a displacement vector D in the porous semicon-
ductor material, given by

D = εB E + P (1)

where P is the effective polarization of all the particles (a pore
can always be thought of as a particle in the form of an air
void in semiconductor crystal) in a unit volume. With the as-
sumptions listed above, the porous semiconductor effective
dielectric permittivity tensor

ε̂(eff) =



ε(eff)
xx ε(eff)

xy ε(eff)
xz

ε(eff)
yx ε(eff)

yy ε(eff)
yz

ε(eff)
zx ε(eff)

zy ε(eff)
zz




can be defined as follows:

D = ε̂(eff)E (2)

FIGURE 1 Pore structure of the mesoporous silicon grown on (110)-
oriented substrate. Orientations of three major pore lattice subsets are shown

From (1) and (2) it follows:

ε̂(eff)E = εB E + P (3)

Within the assumptions from above, the porous semicon-
ductor material can be considered as an assembly of M elec-
tromagnetically separated pore lattice subsets. Hence, the po-
larization of the porous layer is equal to the vector sum of the
polarizations of each lattice subset considered separately, or

P =
M∑

i=1
P(i), where P(i) is the polarization of the ith lattice

subset. In this case (3) can be rewritten as:

ε̂(eff)E = εB E +
M∑

i=1

P(i) (3a)

The polarization of each pore is assumed to be a linear
isotropic function of the local electric field of the electromag-
netic wave, hence:

P(i) = N(i)α(i) E(i)
L (4)

N(i) is the density of the pores of the ith lattice subset of
porous semiconductor layer, α(i) is the polarizability of a pore
in the ith lattice subset, and E(i)

L is the local electric field as
“seen” by each pore of the ith lattice subset.

The local field E(i)
L is given by Yaghjian [11] for arbitrary

shaped inclusions as

E(i)
L = E + L̂(i) • P(i)

εB
(5)

Where L̂(i) is the depolarization factor that depends on the
shape of the pore; it is a tensor of second rank. Under the
assumptions made in the beginning of this section, the polariz-
ability of each pore is a tensor that is always diagonalizable in
a coordinate system, in which one axis coincides with the pore
growth direction, i.e.,

α̂(i) =




α
(i)
1,1 0 0

0 α
(i)
2,2 0

0 0 α
(i)
3,3


 .

The polarization of the ith lattice subset in the coordinate
system associated with said lattice subset then is

P̃(i) = εBM̂(i) Ẽ(i)

where

M̂(i)
j, j = N(i)α

(i)
j, j

εB − Lj, j N(i)α
(i)
j, j

, j = 1, 2, 3;

and M̂(i)
j,k = 0, if j �= k.

where Ẽ(i) is the electric field of the electromagnetic wave in
the coordinate system associated with the ith lattice subset.
If the coordinate transformation matrix is introduced between
the reference coordinate system (which can be associated with
the crystallographic axes of the semiconductor host or any-
thing else) and the coordinate system of ith lattice subset
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Â(i) =



cos ψ(i) cos ϕ(i) − cos ϑ(i) sin ψ(i) sin ϕ(i) − sin ψ(i) cos ϕ(i) − cos ϑ(i) cos ψ(i) sin ϕ(i) sin ϑ(i) sin ϕ(i)

cos ψ(i) sin ϕ(i) + cos ϑ(i) sin ψ(i) cos ϕ(i) − sin ψ(i) sin ϕ(i) + cos ϑ(i) cos ψ(i) cos ϕ(i) − sin ϑ(i) cos ϕ(i)

sin ϑ(i) sin ψ(i) sin ϑ(i) cos ψ(i) cos ϑ(i)




where ϕ, ψ and θ are Euler angles, the relations Ẽ(i) =
Â(i) −1 E and P(i) = Â(i) P̃(i) hold where E and P(i) are in the
main coordinate system. Hence

P(i) = εInP Â(i)M̂(i) Â(i) −1 E (6)

By substituting (6) into (3a) the effective dielectric per-
mittivity tensor of the porous semiconductor layer is obtained
as

ε̂(eff) = εB

[
Î +

M∑
i=1

Â(i)M̂(i) Â(i) −1

]
(7)

where Îi, j = δi, j .
The polarizability tensor α̂ and, in principle, the depolar-

ization tensor L̂ of individual pores, need to be calculated
numerically for the particular pore shape. In [12] the internal
field approach combined with finite element method (FEM)
has been implemented to find the polarizability tensor elem-
ents for circular, square, rectangular and triangular shape of
the inclusions and here we will follow this approach.

According to the assumptions listed in the beginning of
this section, the pore cross section is assumed to be much less
than the wavelength of electromagnetic wave (quasi-static ap-
proximation). The internal field approach, in which the polar-
izability is obtained by determining the internal field of the
pore, is used so the dipole moment d of the air-filled pore in
semiconductor material is calculated as

d =
∫
V

(1 − εB) EdV (8)

and the integration is carried out only within the volume of the
pore.

From another point of view, the dipole moment d is de-
fined as the product of the polarizability α and the local field
EL. Since we assumed that the pores are electromagnetically
separate, the approximation of a single pore in an infinite
medium is accurate enough and, by using the results presented
in [13], the dipole moment can be written as:

d = (1 − εB)V

∫
V

EINT dV

V
(9)

where the internal electric field is integrated within the pore.
In the dipole approximation, the electric field vector in the
pore has x-, y-, z-components, but its integral over the volume
of the pore will have only a component for symmetric pores
aligned with respect to the electric field. Let’s define β as inte-
gral of the internal electric field over the pore volume divided
by said volume and the external field:

βi =
∫
V

(EINT ·ni) dv

V · |EEXT| ,

where ni is a unit vector collinear to ith coordinate axis direc-
tion. In the case of electric field alignment along the Cartesian
direction j , the dipole moment can be written as:

dj = (1 − εB)Vβj EEXT, j (10)

The integral β is thus independent on both pore volume
and the external electric field of the electromagnetic wave.
It can be determined either numerically or analytically. Re-
placing αi in (7) by (1 − εB)Vβi , the final expression of the
dielectric permittivity tensor of porous semiconductor mate-
rial will be

ε̂(eff) = εB


 Î +

M∑
i=1

Â(i)




fi (1−εB)β
(i)
1

εB−L11 f (1−εB)β
(i)
1

0 0

0
fi (1−εB)β

(i)
2

εB−L22 fi (1−εB)β
(i)
2

0

0 0
fi (1−εB)β

(i)
3

εB−L33 fi (1−εi )β
(i)
3


 Â(i) −1




(11)

where fi is the “porosity” of the ith pore lattice, and
M∑

i=1
fi =

p, 0 < p < 1, where p is the total porosity of the porous semi-
conductor layer.

In the next sections the formalism developed here will be
applied to some relevant examples of porous semiconductor
materials.

3 (110)-oriented Si containing mesopores

The method is first applied to analyze the optical
effects on mesoporous Si, which can be formed by an elec-
trochemical etching process on (otherwise unusual) (110)-
oriented silicon substrates. This porous material has been ob-
tained recently [6] and intensively investigated with regard to
its optical properties (see, for example, [5–9]). Particularly,
strong in-plane birefringence (i.e., optical anisotropy) of such
layers has been observed for IR wavelengths. These experi-
mental findings were the basis for several proposed photonic
devices based on such a material. For example, dichroic Bragg
reflectors have been realized by Diener et al. [5], while optical
polarizers have been reported in [8] and [9].

The optical anisotropy of mesoporous silicon fabricated
on (110)-oriented substrates has been explained in [6] by the
different filling fraction of layer in different directions (i.e.,
anisotropic porosity). Similar arguments have been presented
in [5] to explain the different values of birefringence (i.e., op-
tical anisotropy). In particular, the difference of the porosity
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in different directions ([001] and [1̄1̄0] crystallographic direc-
tions particularly) is proportional to the etching current during
mesoporous silicon formation, i.e., proportional to the overall
porosity of the sample. Drawing on the formalism developed
in the previous section, we follow a different approach to-
wards a better understanding of the optical anisotropy in
mesoporous Si formed on (110)-oriented substrates, which in,
our opinion, matches the experimental results better than the
explanation given in [5].

In order to apply our model we first need to determine
the structure of the mesoporous silicon layer grown on (110)
substrate. As was shown in [14], pores in mesoporous Si
propagate preferentially in equivalent 〈100〉 crystallographic
directions independently of the substrate orientation. Hence,
it can be represented as a mixture of three lattice subsets of
pores collinear to the crystallographic directions mentioned.
However, not all 〈100〉 directions are equivalent; 〈100〉 direc-
tions more in line with the electrical field are preferred. This
is certainly due to the fact that the electric field strength at the
tip then is enlarged, enabling avalanche breakdown [15] and
enhancing the electrochemical dissolution reaction at the pore
tip.

A schematic drawing of the ellipsoids forming by some
random distribution the three pore lattice subsets found in
mesoporous silicon grown on (110) wafer is shown in Fig. 1.
For such a material [1̄00] and [01̄0] pore directions are equiva-
lent since they have identical projections in the direction of the
current flow. The [001] direction, however, is perpendicular to
the applied current direction, since it lies in (110) crystallo-
graphic plane.

In the analyses presented, it is assumed that the pores in
each lattice can be represented as distribution of ellipsoids,
which are elongated in the direction of each pore lattice. Such
an assumption is in agreement with extensive XRD investiga-
tions of different porous layers presented in [16]. In this case
(11) takes the following form:

ε̂(eff) = εSi

[
Î +

3∑
i=1

Â(i)M̂(i) Â(i) −1

]
(12)

The pore lattices collinear to the [01̄0], [1̄00], and [001]
crystallographic directions have been assigned index (1), (2),
and (3); respectively. It is farther assumed that the individual
pores represented by ellipsoids are of the same shape and vol-
ume, however, the filling fraction of the pores of the first and
second pore lattices exceeds that of the third pore lattice due
to the current flow direction, i.e., f (1) = f (2) and f (3) < f (1).
With this assumption, depolarization factors and polarizabili-
ties for each pore lattice are the same.

Let us introduce the local pore lattice coordinate system
such that the x axis is parallel to the pore lattice direction and
y axis lies in the (110) plane. The depolarization factor for the
longer axis of the ellipsoid L11 depends on the ratio x = c/a
(a > b = c) between the axes lengths as (see [17]):

L11 = x2(
1 − x2

)3/2

[
arcth

(√
1 − x2

)
−

√
1 − x2

]
(13)

Due to the circular cross section of the pores in meso-
porous Si, L22 = L33 = (1 − L11)/2 obtains.

If the reference coordinate system is introduced as shown
in Fig. 1 (X-axis is directed in the [1̄1̄0] direction and Y -axis
in [001]), the coordinate transformation matrices will be as
follows:

Â(1) =




√
2

2 0 −
√

2
2

0 1 0
√

2
2 0

√
2

2


 , Â(2) =




−
√

2
2 0

√
2

2

0 −1 0
√

2
2 0

√
2

2


 ,

Â(3) =



0 1 0

−1 0 0

0 0 1




If the porosity of the mesoporous silicon layer is p and
the coefficient r is introduced to describe the ratio of filling
fractions between the [001] pore lattice and other lattices, the
electrical polarization matrices for each lattice will be as fol-
lows:

M(1)
1,1 = M(2)

1,1 = (p − pr) (1 − εSi) β1

2εSi − L11 (p − pr) (1 − εSi) β1
,

M(1)
2,2 = M(2)

2,2 = M(1)
3,3 = M(2)

3,3 =
2 (p − pr) (1 − εSi) β2

4εSi − (1 − L11) (p − pr) (1 − εSi) β2
,

M(3)
1,1 = pr (1 − εSi) β1

εSi − L11 pr (1 − εSi) β1
,

M(3)
2,2 = M(3)

3,3 = 2pr (1 − εSi) β2

2εSi − (1 − L11) pr (1 − εSi) β2

The values of the coefficients β1 and β2 according to [17]
are:

β1 = εSi

εSi − (εSi −1) L11

β2 = εSi

εSi − (εSi −1) L22
= 2εSi

2εSi − (εSi −1) (1 − L11)

We now determine the dielectric properties of mesoporous
silicon layer grown on (110) substrate for the following as-
sumptions: the overall porosity is 25%, the aspect ratio of the
pore ellipsoids is 0.5 (i.e., longer axis of the ellipsoid is twice
longer than other two axes), the parameter r is 0.1. The re-
fractive index of Si is assumed to be 3.5 with zero imaginary
part (which is true for wavelengths exceeding the band edge
of Si around 1100 nm and smaller than free carrier absorption
edge). Substituting the parameters into (12) gives the follow-
ing value of the dielectric permittivity tensor in the coordinate
system as shown in Fig. 1:

ε̂(eff) =



8.421 0 0

0 8.1 0

0 0 8.421


 .

This result based on the effective medium model presented
in the previous section means that mesoporous silicon grown
on (110)-substrate will be a negative uniaxial crystal with
an optical axis that coincides with the 〈001〉 direction. The
angular dependence of the numerically calculated dielectric
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permittivity tensor components of such a material is given in
Fig. 2. Suffice it to state that the model anisotropy type pre-
dicted by the theory presented is in complete agreement with
experimental findings as reported in [6] and [5].

The optical anisotropy of such a material is well known
(see, for example [18]). In such crystals for any direction of
the electric field in the electromagnetic wave two eigensolu-
tions of the secular equation exist, which are called ordinary
and extraordinary waves and described by refractive indices
usually denoted no and ne. In the coordinate system as drawn

in Fig. 1, no =
√

ε
(eff)
xx ≡

√
ε
(eff)
zz , while ne =

√
ε
(eff)
yy . The nor-

mal surface of the electromagnetic waves in this case consists
of a sphere and an ellipsoid of revolution, contained in the
sphere. For any direction of light propagation in such a crystal
two waves with different refractive indices exist that have two
different polarization states: an ordinary wave, which always
has the refractive index no and is polarized such that the elec-
tric field of the electromagnetic wave is in the (001) plane, and
an extraordinary wave which has a refractive index as defined
by:

1

n2
e (θ)

= cos2 θ

n2
o

+ sin2 θ

n2
e

,

where θ is the angle between the electromagnetic wave propa-
gation direction and the [001] crystal axis. The direction of
polarization for the extraordinary electric field for the case of
the plane of incidence being the (11̄0) plane, is given by


0
cos θ

n2
e (θ)−n2

o

sin θ

n2
e (θ)−n2

o


 .

The value (no −ne)/no of the relative optical anisotropy
depends on the porosity of the sample, on the relative filling
fraction of the [001] pore lattice subsets, and on the pore el-
lipsoid aspect ratio. The plots of these dependences are given
in Fig. 3. In all of the pictures, the porosity of the sample was
assumed to be 25%, the aspect ratio of the pore ellipsoids is
0.5, and the relative filling fraction of the [001] pore lattice
subset is 0.1 if it is not stated otherwise. One can see that
the dependence of the relative optical anisotropy of the ma-
terial is linearly proportional to the porosity of the sample if
both other parameters are assumed to be constant. However, it
is highly likely that both parameters can change with experi-
mental conditions that create different porosities in the ma-
terial. Unfortunately, no extensive experimental investigation
of the relative optical anisotropy vs. porosity of the sample is
published to date. Such data, interpreted with the formalism
presented here, could provide straightforward information on
the changes of the morphology of the mesoporous Si layers
with porosity.

In any case, based on the results following from the for-
malism presented in the previous section, it is safe to state
that optical anisotropy in the mesoporous silicon etched on the
(110)-oriented substrate is not due to the anisotropic porosity
of the material, but rather due to: 1) anisotropic polarizabil-
ity and depolarization factors of the pores in each pore lattice,
2) preferential ordering of the pores into three distinct lattices,

FIGURE 2 The polar plots of the elements of the dielectric permittivity
tensor of mesoporous silicon grown on (110)-oriented substrate: a diagonal
tensor elements for the case of electric field rotated in the (110) plane; b the
only nonzero nondiagonal tensor element for the case of electric field rotated
in the (110) plane, and c diagonal tensor elements for the case of electric field
rotated in the (100) plane
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FIGURE 3 a Calculated dependence of the relative optical anisotropy of
mesoporous silicon etched on (110) oriented substrate on the porosity of the
material; b calculated dependence of the relative optical anisotropy of meso-
porous silicon etched on (110) oriented substrate on the relative filling ratio
of the [001] pore lattice of the material, and c calculated dependence of the
relative optical anisotropy of mesoporous silicon etched on (110) oriented
substrate on the pore ellipsoid aspect ratio of the [001] pore lattice of the
material

and 3) smaller filling ratio of the pores aligned into [001] lat-
tice compared to those aligned into [100] and [010] lattices.
The relative optical anisotropy of the material is expected to
increase with the porosity of the material even if the rela-
tive filling fraction of the [001] pore lattice stays the same.
With more experimental data available, the effective medium
method theory developed here could help to bring more in-
sights into the pore morphology. The anisotropy of the meso-
porous silicon etched on differently oriented substrates can be
also easily investigated with the methodology presented here.

4 (100)-oriented InP and GaAs containing
crystallographic pores

Other interesting examples of porous materials are
porous InP [19–21] and porous GaAs [20–22] with crystal-
lographically oriented pores. These pores have definite crys-
tallographic growth directions in 〈111〉B for GaAs, InP, and
GaP (in contrast to 〈100〉 and 〈113〉 for Si [24] and 〈100〉
for Ge [25]). In the 〈111〉 directions the zincblende lattice of
the III-V compounds consists of double layers with alternat-
ing short (three bonds) and long (one bond) distances, and
the layers are occupied by A-type (In, Ga) or B-type (P, As)
atoms. The 〈111〉B direction then runs from B to A layers
along the shortest distance between A and B planes (or from
B to A along the longest distance between the A and the
B planes). It is important to note that A planes are generally
more stable against electrochemical dissolution than B planes.
The so-called 〈111〉A directions can be represented as −Ga ≡
As−Ga ≡ As−, while the second set (〈111〉B) can be repre-
sented as −As ≡ Ga−As ≡ Ga− (− means one bond) [23].
For the GaAs case, an (100)-oriented GaAs wafer has four
〈111〉 directions that are preferential crystallographic direc-
tions for pore growth, thus offering four directions for pore
growth. If all four 〈111〉B directions will be expressed de-
pends on the nucleation conditions for the pores. Two general
types of pore nucleation have been observed during the an-
odization: uniform and non-uniform. Non-uniform nucleation
usually resulted in formation of “pore domains” on the surface
of the sample. Figure 4 shows a cross section SEM micro-
graph and an overview of the nucleation for a domain of pores
in GaAs. We focused our studies on porous domains in GaAs
with all four 〈111〉B directions present – see schematic draw-
ing in Fig. 4. The SEM images of such a porous GaAs layer
are shown in Fig. 4a and b. It should be noted, that the pore
cross-section is in this case of triangular shape (see Fig. 4b),
unlike the case of mesoporous silicon, considered in the pre-
vious section. The situation with crystallographic InP porous
layer is substantially the same.

To apply the effective medium method presented here, we
need to consider four pore lattices, as shown in Fig. 4c. In this
case (11) takes the following form:

ε̂(eff) = εGaAs

[
Î +

4∑
i=1

Â(i)M̂(i) Â(i) −1

]
(14)

Simple geometrical derivations lead to the following co-
ordinate transformation matrices, if the reference coordinate
system is introduced as shown in Fig. 4c. The X- and Y -
axes are collinear to the projections of pore growth directions
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FIGURE 4 a, b SEM images of the porous GaAs layer with crystallo-
graphic pores; c the schematic drawing showing the pore lattices accounted
by the model for the case of porous GaAs or InP electrochemically etched
on (100) oriented substrates, and d the coordinate system associated with the
pore lattice

(〈111〉 directions) on the (100) plane:

Â(1) =




√
2
3 0 − 1√

3

0 1 0

1√
3

0
√

2
3


 , Â(2) =




0 1 0

−
√

2
3 0 1√

3

1√
3

0
√

2
3


 ,

Â(3) =




−
√

2
3 0 1√

3

0 −1 0

1√
3

0
√

2
3


 , Â(4) =




0 −1 0√
2
3 0 − 1√

3

1√
3

0
√

2
3




Let us calculate first the dielectric permittivity for the illus-
trative case of round pores. In this case, as in the mesoporous

silicon case considered in the previous section, β22 = β33 and
L22 = L33. The calculations performed for the 15% porosity
give the value of the dielectric permittivity tensor

ε̂(eff) =



7.795 0 0

0 7.795 0

0 0 7.795


 .

It means that the porous InP or GaAs layers would be op-
tically isotropic materials if the pores were of circular cross-
section. However, as mentioned above, the pores in these
materials have triangular cross sections, i.e., β22 �= β33 and
L22 �= L33 (see Fig. 4d for the coordinate system associated
with pore lattices).

We now need to determine the values of the Lii and βi

coefficients. Unlike in the mesoporous Si case described in
the previous section, the pores in InP or GaAs cannot be
considered as inclusions with some aspect ratio since the
pores usually extend through the whole thickness of the sam-
ple. Hence, with good accuracy (assuming that the layer of
porous InP or GaAs is thick enough compared to the pore
cross section, typically around 300 nm), L11 = 0 and β1 = 1.
According to [12] for equilateral triangular shape inclusions
L22 = 0.5. Hence, L33 = 1 − L22 = 0.5 as well. In our cal-
culations the value of β2 was assumed to be 1.88, while
β3 = 1.81.

Numerical calculations for triangular shaped pores 15%
porosity returned the following value of the dielectric permit-
tivity tensor of InP:

ε̂(eff) =



7.61 0 0

0 7.61 0

0 0 7.659




and the following value for GaAs:

ε̂(eff) =



9.639 0 0

0 9.639 0

0 0 9.702


 .

The angular dependence of the numerically calculated di-
electric permittivity tensor components of such a material is
given in Fig. 5. Porous InP and GaAs with crystallographic
pores thus are positive uniaxial crystals and the optical axis
coincides with the [100] direction. The optical anisotropy,
hence, cannot be observed at normal incidence. The refractive
index of the ordinary and extraordinary beams in coordinate

system as drawn in Fig. 4c (left) are no =
√

ε
(eff)
xx ≡

√
ε
(eff)
yy ,

while ne =
√

ε
(eff)
zz . The normal surface of the electromagnetic

waves in this case consists of an ellipsoid of revolution and
a sphere contained in the ellipsoid. The value of the optical
anisotropy of such materials is predicted to be far less than that
of mesoporous silicon etched on (110) oriented substrate. It is
predicted to be higher for GaAs, since it has a higher refractive
index than InP.
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FIGURE 5 Calculated polar plots of the elements of the dielectric permit-
tivity tensor of porous InP grown on (100)-oriented substrate: a diagonal
tensor elements for the case of electric field rotated in the XOY (100) plane;
b the diagonal tensor elements for the case of electric field rotated in the XOZ
plane, and c nondiagonal tensor element for the case of electric field rotated
in the XOZ plane

5 Conclusions:

The effective-medium method presented here pro-
vides a valuable and reliable tool for the quick evaluation
of optical properties of various kinds of porous semicon-
ductor materials. The methodology presented in this paper
has been successfully applied to the practical cases of meso-
porous silicon grown on (110)-oriented substrate and porous
InP and GaAs etched on (100) oriented substrates with crys-
tallographic pores. The results of the application of the ef-
fective medium approach to the mesoporous silicon etched
on (110) oriented substrates are in complete agreement with
experimental findings presented in, for example, [5, 6]. The
methodology presented here helped to provide a correct un-
derstanding of the appearance of the optical anisotropy in
such a material, and can provide a valuable and simple tool
for the investigation of the morphology of mesoporous sil-
icon layers when more experimental data will be available.
In addition, based on the theoretical analyses of porous InP
or GaAs with crystallographic pores etched on (100) wafers,
an optical anisotropy is predicted, which is based not on the
orientation and filling fractions of different pore lattices as in
the mesoporous silicon case for (110) substrates, but rather on
the triangular shape of the pores. Although the method pre-
sented was exemplary applied only for these materials, it can
be easily adapted to other porous materials.
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