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ABSTRACT: Several approaches have been published for analyzing local I–U curve parameter in order to estimate 
the contribution of each point of a solar cell to the global I–U curve. Nearly all of them use a one- or two-diode 
model for the description of the local as well as the global I–U curve. In this paper it will be shown that due to the 
nonlinear diode characteristics and the distributed series resistance network some fundamental restrictions exist for 
averaging local parameters; thus in general the translation of local I–U curve parameters into averaged global I–U 
curve parameters does not work. One fundamental condition will be proposed which ensures that nearly all 
expectations with respect to the applicability of the standard equivalent circuit for describing the global I–U curve of 
solar cells and the relation to local parameters hold. 
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1 INTRODUCTION 
 

The standard equivalent circuit, as shown in Fig. 1, 
implicitly states that current source, ideal diode, and 
ohmic resistor (series resistance) have fixed parameters 
which do not depend on the other components. For 
example, the properties of the ideal diode do not change 
when varying the series resistance; just the voltage 
applied to the diode differs from the external voltage by 
Rs × Iext. We will show that this independence holds for 
(most) distributed 2D networks of local diodes and local 
series resistances (cf. Fig. 2) in linear order in Rs and only 
in linear order in Rs, i.e. it needs a “good” grid to apply 
the standard equivalent circuit. 

Behind this seemingly trivial aspect lies a second 
seemingly trivial aspect: It is a standard implicit expec-
tation that local solar cell parameters can be measured, 
mapped, and the averages of the maps equal the global 
values. However, for the series resistance this is not 
trivial at all, as can be seen by the following discussion: 
In the one-diode model, the global I–U characteristic can 
be written as 
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For each position m on the solar cell, one has basically 
the same equation: 
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where Um is the local voltage, which incorporates the 
series resistance. There is still an open discussion how to 
implement local series resistances, either together with 
the total current, 
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or with the local current, 
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Either way, the standard implicit assumption is that the 
global I–U characteristic can be written as 

 
 
Figure 1: Standard (simplified) equivalent circuit of a 
solar cell, consisting of photocurrent source, ideal diode, 
and series resistance. 
 

 
 
Figure 2: Standard (simplified) model for local solar 
cells connected in parallel by a distributed series 
resistance network. 
 
 

   
( )

,1 mph,m01,

mext

extsext

∑∑

∑

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

−

m

kT
IRUq

m

m

IeI

II
          (4) 

 
i.e. all global currents (densities) of Eq. (1) have been 
replaced by the sums of the local currents (densities), 
which is by no doubt allowed since currents add up, at 
least at short-circuit condition, for which Eq. (4) must 
hold as well. However, combining Eqs. (2) and (4) leads 
to the contradiction that 
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[for either version of the local voltage, Eq. (3), therefore 
the current I appears on the left-hand side without index], 
since the nonlinearity of exponential function and (real) 



distributed series resistance network do not fulfill this 
expectation. So the question arises, why Eqs. (1) and (2) 
do work at all? In other words: Why does the equivalent 
circuit, Fig. 1, work at all as replacement for the distrib-
uted solar cell network, Fig. 2? 

A similar question was raised last year by Micard and 
Hahn [1] who scrutinized the implicit expectation that all 
ohmic losses within a solar cell can be calculated just 
from the overall external current Iext and the global series 
resistance Rs as Pext = Rs I2

ext. Using a numerical 
simulation they showed that the sum of all local Joule 
losses really equals Pext. We will show that for real solar 
cells for which standard equivalent circuits as shown in 
Fig. 1 are a useful representation, ohmic losses can be 
summarized as discussed above, but that it is not true in 
general for a distributed network schematically shown in 
Fig. 2, i.e. the question raised by Micard and Hahn is a 
fundamental one for the understanding of 2D solar cells. 
 
 
2 SERIES RESISTANCE ANALYSIS 
 

The ideal perfect grid (ignoring all series resistances), 
allowing for unrestricted lateral balancing currents and 
leading to perfect equipotential across the solar cell, 
fulfills all common implicit expectations (that local solar 
cell parameters can be measured and mapped and that 
averages of local parameter maps represent the 
corresponding global values): both, photocurrents and 
diode currents add up and can therefore be averaged, and 
all local measurements can be straightforwardly 
interpreted since the voltage is the same everywhere. 
Therefore, against standard interpretation, these perfectly 
parallel connected local diodes can be assumed 
independent diodes. 

We will show that taking into account distributed 
series resistances up to linear order for a 2D network, all 
implicit expectations are still fulfilled, i.e. mapping and 
averaging of local series resistance parameters leads to 
consistent results for the global cell parameter. This is not 
trivial, since this is not true for 1D networks! So, the 
equivalent circuit in Fig. 1 needs a 2D resistance 
network, i.e. it is not valid for a 1D description of a grid 
on a 2D area of a solar cell. 

The modelling starts by assuming a constant emitter 
sheet resistance ρ and a constant area-related diode 
conductance dUdIAK D

1: −=  (A: area of the solar cell), 
but the 2D result will show an intrinsic robustness which 
makes it insensitive to all “random” local variations of 
resistances as well as of diode properties. So for each 
working point along the I–U curve a different value for K 
must be taken in the following. For this linearized 
description, the standard equivalent circuit model, Fig. 1, 
is replaced by that of Fig. 3 with a global diode resistance 
RD which is related to K by 
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The relation between the lumped series resistance Rs and 
the sheet resistance ρ will be derived below. The 
linearized version of the local distributed network in Fig. 
2 is shown in Fig. 4. 

 
 
Figure 3: Linearized equivalent circuit diagram with 
photocurrent source (red), linearized diode resistance RD 
(green), and series resistance Rs (blue). 
 
 

 
 
Figure 4: Linearized version of Fig. 2, described by a 
constant emitter sheet resistance ρ and a constant diode 
conductance K. 
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Figure 5: Simple 2D solar cell model with rotational 
symmetry, described by a constant emitter sheet resis-
tance ρ and a constant diode conductance K. The bound-
ary condition of Eq. (11) is illustrated.  
 
 

The basic differential equation for the simple 2D 
model with rotational symmetry, Fig. 5 (originally 
introduced and discussed in [2]), is derived from current 
conservation for the lateral emitter sheet current Ilat, given 
by the integrated diode current density JD = KU,  
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and Ohm’s law for the lateral sheet current density at 
radius r, 
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yielding 
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In what follows, we will use the abbreviation 
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for the relative area of the solar cell inside the radius r. 
The boundary condition 
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expresses that at the edge, the lateral current equals the 
global external current. 

The analytical solution of Eq. (9) for this boundary 
condition is 
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where I0 and I1 are modified Bessel functions of corres-
ponding order (asymptotically showing an exponential 
behavior for large values). 

Note that for all passive networks Iext will show up as 
a scaling factor in the voltage distribution; this is one 
reason why in our analysis always Eq. (3a) is used for 
defining local series resistances and why we believe that 
Eq. (3b) is fundamentally wrong.  

Introducing the relative area a, Eq. (10), as variable, 
Eq. (12) can be rewritten as 
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expressing a “relative-area-related diode resistance”, its 
meaning becoming clear below. Solving the differential 
equation, Eq. (9), up to linear order in ρ [i.e., using a 
linear approximation to I0 in Eq. (13)] and applying the 
boundary condition we get 
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where for the second expression, Eq. (6) was used to 
introduce RD. Obviously,  
   (i) since R(a) depends linearly on a and a varies 
between 0 and 1, the average of R(a) is attained at a = 
0.5, and from Eq. (14) one has that 〈R(a)〉 = R(0.5) = RD; 
   (ii)  since U(rmax) = Uext, one has that R(rmax) = Rsc, the 
global solar cell resistance. 

Furthermore, from the global linearized equivalent 
circuit, Fig. 3, one has that the global series resistance 
can be obtained as 

 
   Rs = Rsc – RD.           (15) 

 

This allows to introduce a relative-area-dependent series 
resistance function by defining [3] 
 
   Rs(a) := Rmax – R(a).          (16) 

 
This definition has two important consequences which 
justify the choice for Rs(a): 
   (i)  Due to R(a) being a linear distribution, also Rs(a) is 
a linear distribution, which allows a simple arithmetic 
averaging of Rs(a), and 
   (ii)  the arithmetic average of Rs(a) fulfills exactly the 
relationship of the linear-response equivalent circuit: 
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             = R(1) – R(0.5) = Rsc – RD = Rs.        (17) 
 

Figures 6 and 7 summarize these results, derived 
from Eqs. (14) and (16): 
– the average of the local series resistances equals the 
global series resistance; 
– the average of the local diode resistances equals global 
diode resistance; 
– the average voltage necessary to drive a global current 
through the local diodes is independent of ρ, i.e. 
averaging local diodes is independent of averaging local  
series resistances. 
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Figure 6: Illustration of Eq. (14) with R(a) vs a. The 
average of the local diode resistance, 〈RD〉, is the global 
diode resistance, RD = R(0.5), and the maximum is the 
global solar cell resistance, Rsc = R(1). 
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Figure 7: Illustration of Eq. (14) with R(a) vs a 
indicating the calculation of the global series resistance 
〈Rs〉 according to Eq. (17).  



Now, by defining (cf. [4]) 
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we can rewrite Eq. (14) as 
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which for the global Rs = Rsc – RD = R(1) – R(0.5) yields 
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i.e. 
 
   .111

Ds,s RRR
+=

∞

           (21) 

 
This is the effect of a distributed network: a part of the 
lateral current is short-circuited by the local diodes, 
reducing the ohmic losses through the grid! 

So although the series resistance changes along the  
I–U curve for each injection according to Eq. (21), one 
parameter Rs exists representing the average series 
resistance. Using the linearized version, Eq. (14), it is 
easy to show that all local Joule losses sum up to 
Pext = Rs I2

ext. This is exactly what Micard and Hahn [1] 
stated. It is an important check for the series resistance 
network of real solar cells since the full solution of Eq. 
(13) does not fulfill this condition in general.  
 
 
3 GENERALIZATION OF THE SIMPLE DISTRI-
BUTED SERIES RESISTANCE MODEL 

 
Using the variable a instead of r [according to 

Eq. (10)] in the differential equation Eq. (9) we find 
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The simplified solution of Eq. (14) linear in ρ is obtained 
by taking a constant voltage U = RD Iext in the integral. 
This voltage is just the solution for ρ = 0. Please note that 
the factor 1/a is a direct consequence of the 2D model 
and in consequence enforces dU/da to be constant. The 
physical reason for this is the increased number of paths 
for points far away from the contacts, basically 
compensating the increases ohmic losses along one path. 
This is the same explanation as for Ω/square being the 
specific sheet resistance. 

Essentially a part of Eq. (22) just describes averages 
over local diode currents, i.e.  
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So in linear order in ρ the solution and all consequences 
described above will not differ if e.g. local diode 
properties vary randomly from point to point (white 
unbalanced noise) or if local series resistance and local 
diode properties are spatially uncorrelated, i.e.  
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Some essential differences exist for the 1D case. The 

factor 1 / a is missing in Eq. (22) and Eq. (23). Thus 
dU/da scales with a, i.e. the voltage U(a) linear in ρ 
scales with a2. So while in the 1D case dU/da scales with 
the integral of local diode currents, in the 2D case dU/da 
scales with the average of local diode currents. This 
induces a significant dependence of the position of local 
recombination-active diodes to ohmic losses in the 1D 
case which does not exist in the 2D case. Additionally, 
unambiguous averaging of diode properties is not 
possible because their relevance for the global solar cell 
properties drastically depends on the position relative to 
the grid; e.g. if a grid finger is broken in the 1D case, all 
diodes beyond that point do not contribute to the global 
solar cell properties. In the 2D case a broken grid finger 
just leads to an increased current flow along ways 
bypassing the broken grid finger. In summary the factor 
1 / a in front of the integrals in Eq. (22) and Eq. (23) 
reflects the intrinsic robustness of a 2D network for 
bypassing defects; current flow across a 2D network is a 
strongly nonlocal phenomenon and this is necessary to 
apply reasonably the standard equivalent circuit shown in 
Fig. 1 to standard solar cells. 

Eq. (23) and (24) can explain why local diode 
variation has a much less severe influence on local series 
resistances than often expected, which probably was one 
reason to apply Eq. (3b) and the model of “independent 
diodes” (in a star-connected circuit) as e.g. described in 
[5 - 7].  

Further reasons for insignificant variation of local 
diode slopes are lateral balancing currents over short 
distances: As long as the approximation of ohmic losses 
up to linear order in ρ is valid even for the whole solar 
cell, ohmic losses for lateral balancing current over short 
distances are negligible. The real challenge are lateral 
balancing currents over large distances across a solar cell, 
which are beyond the scope of this work. 

Of course, main bus bars, as schematically shown in 
Fig. 8, effectively reduce the length of the path for lateral 
current flow relative to the area of a solar cell. As implied 
by the circles, main bus bars lead to a parallel arrange-
ment of (identical) smaller solar cells, roughly N cells 
with an area A/N each. Taking into account Eqs. (18)–
(21), the consequence for the voltage distribution can be 
summarized as  
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i.e. 
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Figure 8: Two different paths for a current generated on 
the left flowing to the sink on the right via a direct 
connection (dashed line) or via the grid (arrow–grid–
arrow). The presence of the grid and main bus bar 
structure virtually separates the solar cell into N = 4 
different parts (indicated by the 4 circles). 
 
 
The main bus bars (+ grid fingers + bulk resistance) 
induce pure (nondistributed) ohmic losses, so the 
complete average series resistance of the global solar cell 
can be written as 
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leading to the equivalent circuit shown in Fig. 9. 
 

RD / B 

Rs, ∞

Rs, nondistributed

 
 

Figure 9: Equivalent circuit according to Eq. (22). The 
green resistance is the diode resistance RD divided by B, 
while the blue resistances represent the series resistance 
(Rs,∞ left, Rs,nondistributed right). 
 
 
This equivalent circuit in combination with the 
simultaneous averaging procedure for local series and 
diode resistances as described above leads to consistent 
and completely quantitative results for mono- and many 
multicrystalline solar cells using the CELLO [2, 8] as 
well as photoluminescence [3, 9, 10] techniques. 
 
 
4 SUMMARY  
 

The standard interpretation of a global I–U curve 
needs an independent averaging of local solar cell 
parameters, e.g. local series and diode resistances. This is 
in general only possible in linear order in the sheet 
resistance ρ and for a 2D resistance network.  

The average local diode resistances are not 
influenced by the sheet resistance ρ. But the average 
local series resistance depends on the average diode 
resistance, i.e. Rs changes along the I–U curve.  

The reason WHY an analysis (only) in linear order in 
the sheet resistance ρ is enough for analyzing solar cells 
is NOT a physical one! It is the large effort of the process 
engineers to design and produce emitters and grids good 
enough for an efficient current collection from all parts of 
a solar cell.  

In consequence this is as well the reason for the 
applicability of the standard equivalent circuit.  
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