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The reactive solid-liquid contact is not too well understood in
general, and this is particularly true for the Si-liquid contact. Even
the supposedly simple chemical etching of Si or SiO2 is still full of
surprises, as anyone employed in microelectronics will acknowl-
edge. More specifically, a case could be made that the current-carry-
ing solid-liquid contact with Si as the electrode and an electrolyte
containing some F2 ions, commonly in the form of diluted HF, is not
understood at all. Nobody can predict the complex features of the
current-carrying Si-HF contact. Not even the voltage-current charac-
teristics obtained in simple experiments are computable from first
principles. Porous silicon, with an increasing wealth of features that
are mostly not understood,1,2 and the totally mystifying current-volt-
age oscillations that occur in a large region of the available parame-
ter space,2-4 bear witness to this claim.

This paper deals exclusively with voltage-current oscillations in
Si, but it is worthwhile to point out that this phenomenon is not spe-
cific to the Si electrode. In fact, it was Faraday some 100 years ago
who remarked on oscillating electrodes (a term we use for both cur-
rent or voltage oscillations, depending on the experimental condi-
tions chosen),5 but until now no general model has been developed.
The recent interest in Si electrochemistry, triggered by the observa-
tion that one kind of porous Si shows strong luminescence,6,7 has
also spurred a number of investigations into the current-voltage
oscillations observed under special but easily established conditions
in Si.8-14 It is now generally accepted that oscillations can occur
under conditions where an oxide is formed by the current and is in
turn dissolved by the electrolyte. However, despite these recent
efforts, not one single consistent model of electrode oscillations has
been suggested so far.15

Any model of an oscillating electrode needs three ingredients:
First, a mechanism for a local oscillator is required. This is obvious,
because without an atomic-scale oscillation mechanism, no oscilla-
tions can occur. More specifically, a mechanism that describes some
nonlinear behavior of the electrode on an atomic scale must exist,
because linear relations, e.g., the linear interplay of oxide formation
proportional to the current and chemical oxide dissolution, does not
lead to stable oscillations but to a steady-state equilibrium, as al-
ready pointed out by Franck in 1978.16

Still obvious, after some deliberation, is the second ingredient. A
synchronization mechanism that forces at least some of the local
oscillators to synchronize is a must for “macroscopic” electrode
oscillations, i.e., oscillations observed with specimens of macro-
scopic dimensions. Local current oscillators that are not synchro-
nized to some extent will, if summed up to yield the total current,
lead to an average current that shows no oscillation but at best some
“colored” noise.

Less obvious is the third and last ingredient needed for any com-
plete model of an oscillating electrode. Perhaps surprisingly, a
desynchronization mechanism is needed just as well. This is so
because otherwise electrodes would either oscillate strongly or not at
all. Many phenomena that are observed (e.g., damped oscillations17)
or predicted (nonsynchronized oscillations that manifest themselves
in “colored” noise), would be impossible without a mechanism that
opposes synchronization.

In this paper a complete model of the oscillating Si electrode
under “low-frequency” conditions is presented for the first time.
“Low-frequency” conditions, in a preliminary imprecise definition,
are obtained for relatively low HF concentrations, voltages, or cur-
rents, respectively. The term is precisely defined in what follows, but
it is prudent to point out at this stage that the model presented does
not yet include all kinds of observed electrode oscillations.

Figure 1 illustrates a few of the experimental data that need to be
modeled. The current density, J(t) as a function of time, t, the fre-
quency, f(Uan, J, CHF), of the oscillations as a function of the applied
anodic voltage, Uan, the current density, J, or the concentration of the
electrolyte, CHF, needs to be calculated, but also less obvious para-
meters such as the average oxide thickness, the capacitance of the
solid-liquid junction, or the roughness of the solid surface, should be
obtained with a complete model.

Model
We start with the generally accepted fact that the local mecha-

nism of an oscillating Si electrode relies on the formation and disso-
lution of SiO2. Several experiments demonstrate that the resulting
oxide layer is less than 10 nm thick on an area and time average (see,
e.g., Ref. 18 and 19).

On this base we first postulate that all the current flowing across
the interface produces oxide at all times and in all places. This is the
quantitative definition of the “low-frequency” condition; it must not
be true for all oscillations observed. It is possible, e.g., at higher cur-
rents and frequencies, that some part of the current does not produce
oxide, but this does not concern us in this paper. This is not a strong
assumption and it poses no limits on the spatial or time dependence
of the current. Local current flow thus always increases the local
thickness, s, of the oxide layer. The oxide thickness in turn may still
depend on position as well as on time: s 5 s(x, y, t). The relation

[1]

with b being a geometrically determined parameter (essentially the
valence of the process, i.e., the number of holes needed to produce
one SiO2 unit) and a the purely chemically determined dissolution
rate, must hold locally and at all times. The dissolution rate, to be
totally general, must not be a constant but could depend on local con-
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ditions. This would be the case, e.g., if the chemical dissolution rate
depends on the field strength and therefore on the local thickness of
the oxide, but also if the surface of the oxide is rough in some places
but not in others. O2 ions must migrate through the existing oxide
layer to be consumed at the interface. As already stressed by several
authors,4,20 the ion transport through the oxide layer holds the key for
the understanding of the oscillation phenomenon. We propose in our
only strong assumption that the strong electric field present across the
(thin) oxide is a nonlinear driving force for the ion transport through
the oxide. Since a uniform field-enhanced diffusion is not sufficient-
ly nonlinear, we propose an “ionic breakthrough” mechanism. When-
ever the electric field in the oxide approaches an upper critical value,
Emax, a breakthrough channel or pore is formed, leading to a highly
localized ionic current, Jox, to be matched by the hole current at the
interface that is largely independent of oxide thickness. At and around
the pore tip the oxidation is enhanced, leading to a roughly semi-
spherical oxide “inclusion” around the pore. Since SiO2 formed from
a given volume of Si almost doubles in volume, a corresponding
bump is formed on the oxide-electrolyte interface, i.e., the oxide sur-
face. Figure 2a illustrates this mechanism. Inherent in this mechanism
is a lateral growth of oxide relative to the pore tip, resulting from
rapid diffusion of O2 ions in the SiO2-Si interface or from a move-
ment of the channel end to the thin part of the oxide.

It is unimportant for the model exactly how the ionic break-
through occurs or which mechanism establishes lateral oxide growth
in which precise geometry. It is likely that the ionic breakthrough is
linked to or even triggered by a normal (avalanche) electronic break-
through, but since this is of no importance for what follows, we do
not discuss or speculate about the detailed mechanisms.

We now specify our basic assumption in order to enable quanti-
tative modeling. While the oxide thickness increases around the pore
tip, the electric field decreases without reducing the ion transport
through the oxide. At a minimum value, Emin, the oxide growth
stops. This means that in analogy to an electronic breakthrough, we
postulate that after starting the ion transport through the oxide, the
electric field can be reduced significantly without reducing the ion
current. Leaving aside a microscopic picture for the ion transport
and only pointing out that the ions have to pass a 2-8 nm thick oxide
layer, a mechanism emerges centering around a narrow (1 nm or
less) channel or pore through the oxide which is opened at high field
strength and closed at low field strength. With the local anodic
potential, Uan, and defining Emax as the maximal field strength need-
ed for ionic breakthrough and Emin as the minimal field strength for
the ending of the ionic current flow, the relations

[2]

for the minimum and maximum oxide thickness, s, are obtained. The
local oxide layer thickness thus increases by approximately

Ds 5 smax 2 smin [3]

while the channel is “open.”
This model reverses ideas previously presented2 where an elec-

tronic breakthrough leading to a locally enhanced nonoxidizing cur-
rent was envisioned as the cause for electrode oscillations. It is obvi-
ous that the ionic breakthrough mechanism indeed provides for the
required local oscillator. However, as stated previously, it does not
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Figure 1. A set of current vs. time measurements shows different features of the oscillating Si-HF-system. (a-c) Applying a constant anodic potential Uan 5 5
V, the frequency and shape of the oscillation differ strongly. (a) Almost chaotic behavior, (b) sine waves, and (c) very asymmetric oscillation are observed. Upon
reducing the potential to Uan 5 3 V, (d) damped oscillations occur.
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necessarily account for macroscopic oscillations that can only be
observed when a large number of local oscillators are synchronized.
This is true even for the case of a perfectly homogeneous electrode
where all local oscillators would start at the same time, because we
have to make allowances for the statistical nature of the postulated
breakthrough process. Emin and Emax must be seen as lower and
upper limits for the ionic breakthrough (or “opening” and “closing”)
of the channels, and in accounting for the statistical nature of these
events, we have to define two functions, W(E) and R(E), which give
the probability for the opening and the closing of a channel within a
time Dt on an area DA. These functions are detailed in the Appendix.

The statistical nature of the proposed process, aside from the more
realistic situation where the oxide layer would never be totally homo-
geneous over large areas at any one time during an oscillation, would
necessarily cause a rapid desynchronization of originally synchro-
nized local oscillators. No macroscopic oscillations would be ob-
served after some time, because the local currents are then summed
up with random phases, yielding a constant, if noisy, macroscopic
current. We emphasize that a nonoscillating electrode in this model
does not prove the absence of local oscillations but may only show the
absence of a synchronization mechanism. If one were to measure the
spectral intensity of the current noise, we predict that in this case a
strong peak would be present at the typical frequency of the local
oscillators.

Our local oscillator, however, has a built-in synchronization
mechanism with respect to its nearest neighbors. This results from
the lateral growth of the oxide around the pore tip as illustrated in
Fig. 2a-c. Let us assume that a new channel (no. 3 in Fig. 2b) is
opened close to an active one (no. 2 in Fig. 2b). This neighboring
channel then must produce less oxide before it stops again, because
it is “helped” by the already active pore (cf. Fig. 2c). Its stopping
point is thus already much closer to the stopping point of the first
channel; we could say that its dynamics are enhanced until it catch-
es up with the first oscillator. After a few cycles (in fact one is suffi-
cient) the two local oscillators are well synchronized.

A desynchronization mechanism, as previously pointed out, is
also needed for a realistic model. It too, exists as an intrinsic prop-
erty of the local oscillator model. Once a channel opens, the current
density is locally increased, leading to increased ohmic and diffusion
losses which locally reduces the potential across the oxide layer (see
Fig. 3a). This reduces the electric field strength in the neighborhood
of an active channel and therefore the probability for a breakthrough
next to an active pore.

Applied to the example given, this effect would slow down the
dynamics of the oscillator until it is perfectly out of phase. Conse-
quently not all areas of the oxide layer could grow at the same time,
which indicates a desynchronization of the macroscopic oscillation.
Assuming a reduction of the current density J(r) ~ r22 at a distance
r from the channel, the electric field shows the cylindrical geometry
of Fig. 3b and the losses for the applied potential are given in a first
approximation by

[4]DU r
A

ran( ) 5 2

Figure 2. A highly schematic view of the oxide growth mechanism. (a) Chan-
nel 1 is already closed while channel 2 is open. Both pores are growing inde-
pendently because they do not overlap. (b) A third channel opens between
channel 1 and 2 if the desynchronization is small, i.e., the anodic potential at
channel 3 is not too much decreased by the current through channel 2. (c) The
closing of channel 3 is early and thus synchronized to channel 1 and 2,
because channel 3 needs to grow less oxide for the “closing” to take place.
This mechanism leads to a nearly homogeneous growth of the oxide layer. The
chemical dissolution occuring all the time (shown, roughly to scale, by the
lightly shaded areas) smoothes the surface even more.

Figure 3. The decrease or lost DUan(r) of the anodic potential due to high
local current densities are plotted in (a) as a function of the distance r from a
breakthrough channel. (b) The corresponding current field and equipotential
lines needed to obtain a field strength that decreases by <r2 on both ends of
the channel. The schematic drawing is roughly to scale relative to the oxide
thickness.
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As a first approximation this function is used to describe the poten-
tial and diffusion losses of the anodic potential in the Monte Carlo
simulations with A as a fitting parameter.

We now show that the model described can account for most, if
not all observations in the low-frequency domain.

Analytical Results
To summarize, our model contains (i) local oscillators caused by

oxide growth in an ionic breakthrough mechanism; (ii) synchroniza-
tion of local oscillators by nearest-neighbor interaction due to lateral
growth at the breakthrough channel tips; and (iii) desynchronization
by ohmic or diffusion losses of the anodic potential at local oscilla-
tors. The performance of the model and its dependence on parameters
is analyzed by Monte Carlo simulations, but before discussing these
general results, some qualitative features and analytical formulas for
the case of well-synchronized oscillations are presented.

One important feature of the model is that it provides for a per-
sistent, but changing roughness of the oxide surface as well as the Si-
oxide interface. The local oscillators, if active, always produce rather
pronounced bumps during the oxide-building phase, as shown in
Fig. 2. The chemical dissolution of the oxide, however, tends to
smooth the surface and thus reduces the roughness. This is an impor-
tant feature with repercussions to the calculation of, e.g., capacitance
or dielectric constants as obtained by averaging measurements such
as ellipsiometry.8 The Monte Carlo simulations provide a detailed
and quantitative picture of this process; here we just keep in mind
that the speed of a chemical dissolution process depends on surface
roughness since it is roughly proportional to the surface area.

For very slow oscillations the time for building up the oxide can
be neglected compared to the time for dissolving the oxide. This can
be seen directly in the current-voltage curves of Fig. 1, where a short
current peak corresponding to oxide growth is followed by a long
period of low current corresponding to oxide dissolution. The time,
T, for one oscillation period is therefore approximately T 5 Ds/a .
Using the electric field–defined dynamics for the local oscillators as
discussed previously, we find

[5]

This linear correlation between T and Uan is by no means obvious,
because for high-frequency oscillations, which are not included in
this model, the reverse is true, i.e., the oscillation time decreases
with increasing potential.21 For extremely diluted HF electrolytes
and thus a slow dissolution rate a, the oscillation time then increas-
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es linearly as a function of the applied voltage, as experimentally
shown in Ref. 4 and 22 or in our own measurements (Fig. 4). In addi-
tion, the frequency f 5 1/T should be proportional to a; but this is
much more difficult to ascertain experimentally, because changing
the HF concentration and therefore a, also changes other properties
of the Si-HF contact. Nevertheless, a linear correlation between the
frequency and the dissolution rate was found experimentally in
Ref. 12. Note that a is the only strongly temperature-dependent
parameter in Eq. 4. This allows for appropriate experiments as a test
of the model. As a last remark, a must not be taken as the dissolu-
tion rate of normal oxide in HF. Due to the persistently rough nature
of the oxide surface, the dissolution rate on the average is enhanced
by a factor of approximately 1.7, as shown in Ref. 14. For stable
oscillations the mean oxide layer thickness does not change, i.e.,
applying Eq. 1 we find 

[6]

The bar denotes the averaging across the complete electrode area
and over one oscillation period. The mean oxidizing current thus is 

[7]

Inserting Eq. 6 in Eq. 4 we find

[8]

This correlation between oscillation frequency and mean current
density has experimentally been shown in Ref. 14 and 22.

The model thus allows generation of the correct relations of ob-
servable parameters and agrees qualitatively with experimental re-
sults. In the remainder we demonstrate that with a reasonable set of
model parameters the equations given supply quantitative data which
match perfectly all experimental data known to us.

Results from Monte Carlo Simulations
Implementing the model.—Monte Carlo simulations are imple-

mented on a PC and were performed for various sets of model para-
meters as discussed in the Appendix. The quantitative results depend
on the parameters used to implement the model. The case of
extremely diluted hydrofluoric acid with a dissolution rate of a 5
0.04 nm/s was chosen, which was calculated from our own experi-
mental data using an electrolyte concentration of 0.05 wt % HF in
Ref. 14. There are also independent data for a 23 that give values
very close to the chosen one; a thus can be considered to be a known
parameter for the model.

An assumption has to be made for the critical electric field
strengths. We chose Emin 5 5 3 106 V/cm and Emax 5 3 3 107 V/cm,
which not only suits experimental results relating to current transient
measurements described in Ref. 14, but is compatible with the elec-
tronic breakthrough strengths of thin oxides.24 Again, admittedly
with some more uncertainties as in the case of a, the critical field
strengths are in essence known parameters of the model.

We further assume a constant oxidizing current of 0.1 fA through
each open channel as discussed in the Appendix. This value is deter-
mined by the average current density and the geometry of the
process and can also be viewed as a known parameter and not a fit
parameter of the model.

More critical is the choice of some appropriate probability func-
tions W(E) and R(E), since not much is known about these functions
from independent experiments. It is, however, very likely that oxides
with rather large breakthrough field strengths will not have very
“soft” probability functions. Bearing this in mind, we fitted reason-
able functions so as to obtain best results. (See the Appendix for
details.)

For the desynchronization as described by Eq. 4, we take A 5
0.2 V nm. This is the only parameter in the model that is mostly deter-
mined by fitting, because no independent estimate could be made so
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Figure 4. For extremely slow current oscillations, the oscillation period is
measured as a function of applied anodic potential. We find a straight line in
agreement with Eq. 5.
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far. Figure 3 shows, roughly to scale, the physical implications of the
chosen value. Stable macroscopic oscillations, damped oscillations,
unsynchronized oscillations, or no oscillations at all can be obtained
by varying A. We return to this parameter in the Discussion.

In essence, the model needs three parameters that have to be
obtained primarily by fitting model data to experiments.

Results

Figure 5a-d shows maps of the oxide layer thickness on an 200 3
200 nm area for subsequent phases of one oscillation period. Most
important is the lateral coupling of local oscillators in areas more
than 100 nm in size, although there is no mechanism implemented in
the model to force such large areas to nearly the same thickness.
What happens is that the lateral synchronization of these areas is
caused by percolation due to the local coupling mechanism, which
consequently leads to synchronization in the time domain and to
macroscopic oscillation. If the anodic potential is reduced, or the
parameter A in Eq. 4 (and thus desynchronization) is increased, no
macroscopic current oscillations manifest the still-existing local
oscillations. The corresponding oxide thickness map s(x, y) of Fig. 6
shows a random distribution for s(x, y), and the histogram in Fig. 6
may be interpreted as the average of the histograms in the oscillat-
ing case of Fig. 5.

The calculated data of the Monte Carlo simulation can be com-
pared with experimental results. First, the thickness distribution of
the oxide layer, e.g., the oxide layer distribution function D(s),
which determines the total area of the oxide with thickness s, can be
directly obtained. Comparing our calculated histograms in Fig. 5a-d
with the experimentally determined distribution function given in
Ref. 14, we find an almost perfect agreement for all phases of the
oscillation. It should be emphasized that the calculated and the mea-
sured distribution function would be completely independent if only
their shape is compared; the agreement of the numerical values,
however, is to some extent the result of the fitting of the three para-
meters mentioned to the absolute thickness values of the oxide, as
given in Ref. 14.

If the same set of parameters employed in the Monte Carlo sim-
ulations is used for Eq. 5, we can calculate, e.g., the frequency of the
oscillations as a function of the applied voltage and compare the
results with experiments in Fig. 4. The agreement is perfect, provid-
ing an independent proof of the validity of our assumptions. Similar
results are obtained for the frequency-current relations.22

Going beyond the analytical formulas and using the distribution
function D(s) obtained from the histograms, we can now calculate a
number of measurable quantities, e.g., the mean oxide thickness

[9]k ls sD s ds5 ∫ ( )

Figure 5. A series of “snapshots” of the oxide layer thickness obtained by
Monte Carlo simulations demonstrates the strong coupling due to percolation
of the oxide layer thickness. The calculated histograms are compared with
the measured distribution functions of the oxide layer thickness reported in
Ref. 12.

Figure 6. The map of the oxide layer thickness for a nonoscillating macro-
scopic current shows no percolation areas. The distribution function of the
oxide layer thickness may be interpreted as the average of the distribution
functions of a macroscopically oscillating system.
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the oxide roughness

[10]

capacitance

[11]

and the ratio

[12]

which is the “virtual” change needed for the dielectric constant e of
SiO2 if the capacitance is calculated from the mean oxide thickness
according to C 5 eevirtuale0(1/ksl).

One set of results is shown in Fig. 7A-E. In order to demonstrate
the strong synchronization due to nearest-neighbor interaction and
percolation, we chose random starting conditions, i.e., a random dis-
tribution of oxide thickness, but this generates only small aberrations
in the first period of oscillations.

The current oscillations obtained from the calculation perfectly
match the shape of the experimental curve given in Fig. 1c. To bet-
ter understand the oscillation process, four points in Fig. 7A, corre-
sponding to specific changes in the oscillation process, are labeled
a-d and are discussed. The computed images in Fig. 5a-d correspond
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exactly to the marked points in Fig. 7A; an interpretation of the par-
ticular state of the electrode at the four points is thus possible.

At point a we find a nearly homogeneous thick oxide layer,
which is dissolved with a nearly constant rate a up to about point b,
where first oxide areas show ionic conductivity and are growing
quickly while most of the oxide is still thinning. Point c marks the
phase of the oscillation with maximum oxide current. At this point,
about half of the area of the oxide is still only dissolving while on
the other half the oxide has already reached its maximum thickness.
In point d the cycle is almost closed. Most areas show thick oxide
layers and are only chemically dissolved, while some remaining
areas with thin oxide suffer ionic breakthrough and increase their
thickness. Consequently, whereas the synchronization process is
strong enough to produce macroscopic current oscillations, the elec-
trode is far from behaving in a homogeneous manner.

Next we discuss Fig. 7B, showing the mean thickness of the
oxide. As expected, it decreases linearly between a and b, because
only chemical etching takes place. The maxima and minima neces-
sarily cannot coincide with the current extrema but can be easily cal-
culated. Since they correspond to ds/dt 5 0, we find their location at
the intersection of the current curve with the mean current Jox given
in Eq. 7. The intersection points are shown in Fig. 7A. 

A remarkable feature of the model is its ability to provide data
about the surface roughness, Fig. 7C shows that the roughness, as
defined in Eq. 10, oscillates with a rather large amplitude and almost
in phase with the current. If measured with an instrument that is not
sensitive on a small scale (nanometers), but perceives only wave-
lengths in the 10 nm region, a waviness that roughly corresponds to
the visual impression of Fig. 5a-d would be detected. A constant
changeover between a relatively rough surface thus should be ob-
served and was indeed observed by in situ atomic force microscopy
(AFM) analysis in Ref. 19.

Next we calculate the capacitance of the system. Figure 7D
shows the result and, as expected, shows that the capacitance in-
creases roughly inversely proportional to the mean oxide thickness.
If one just uses the mean oxide thickness, however, to compute the
capacitance, the result does not fully agree with the measurements
and it must be assumed that the dielectric constant also oscillates.
This is so because the total capacitance of parallel capacitors differ-
ing in their oxide thickness is not determined by 1/<s> but rather by
<1/s>. With the help of the equation

[13]

it is possible to calculate the changes in e that seem to be present (or
that are directly measured with an ellipsometer if the raw data are
processed on the basis of the mean oxide thickness) in measure-
ments reported in Ref. 22.

Figure 7E shows evirtual. The change of 5% seems to be negligi-
ble, but since the variation is given by

[14]

the discrepancy increases strongly for thinner oxide layers obtained,
e.g., at the higher frequencies employed in Ref. 22. In essence, we
claim that e is constant and does not change during an oscillation.
Changes observed or computed are due to an averaging procedure that
must not be applied for the rough oxides present during oscillations.

Discussion
First, we discuss a possible generalization of the model. Macro-

scopic oscillations result from the interplay of synchronizing and
desynchronizing nearest-neighbor interactions and a percolation
process which may spread synchronization over a large area.

Using Fig. 2 we can define a minimum distance d of two chan-
nels which can exist at the same moment. The critical field strength
Emax has to be reached at d, which depends on the actual thickness,
the applied potential, the probability function W(E) and the ohmic
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Figure 7. As a result of the Monte Carlo simulation, current (A), mean oxide
thickness (B), surface roughness (C), capacitance of the oxide layer (D), and
the relative change in the dielectric constant evirtual are plotted as a function
of time. In (A) distinct times of the oscillation are marked corresponding to
the maps in Figure 5a-d. The average oxidation current density, Jox equals the
current density, J, whenever its capacitance, Cox, is maximal or minimal.
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losses DUan(r). If d is large and no third channel can open before one
of the two existing channels is closed, the oxide cannot grow homo-
geneously and is rather rough. In contrast, if d is small, the oxide
layer can grow nearly homogeneously, because the semispherical
oxide inclusions overlap. It might be useful to find a geometric para-
meter j(d,Uan) which determines the ratio between the strength of
the synchronization and the desynchronization mechanisms. Tenta-
tively, we define

[15]

Beyond a critical value jcrit (yet to be determined), we expect macro-
scopic oscillations; otherwise, only colored noise is present. This ana-
lytical equation, if justified and worked out, could allow a simple and
general calculation of whether macroscopic oscillations are to be
expected, without resorting to Monte Carlo simulation. It may then be
used to obtain phase diagrams of oscillating electrode systems.

Next, we critically review the fundamental assumptions of the
model. Most basic is the ionic breakthrough hypothesis with the con-
comitant rapid oxide growth around the pore tip. No direct confir-
mation of this mechanism is known to us; it thus must be taken as an
essential prediction of the model, verifiable, e.g., with high-resolu-
tion electron microscopy or scanning tunnel microscopy. It was al-
ready mentioned that the postulated ionic breakthrough may be in-
extricably linked with electronic breakthrough; here we point out
that this may be the clue to the understanding of high-frequency os-
cillations which are not included in this model.

The parameters coupled to the ionic breakthrough are less critical.
The exact values of the critical field strengths or of the probability
function will influence the numerical results but not in a fundamental
way. Since the values used are within the region that would be expect-
ed from any separate consideration, we hold them to be uncritical.

Parameter A describing the desynchronization process is more
critical. A back-of-the-envelope calculation looking at a simple Pois-
son equation that might pertain to the problem yields no usable
result. Again, the value chosen must be taken as a prediction of the
model to be justified either by more involved calculations or by
experiments.

The strength of the model comes from two points: (i) It is physi-
cally sound and as simple as it can be to describe a complex phe-
nomenon and (ii) It reproduces quantitatively a large number of
experimental results, which could not be understood at all so far,
with just one basic assumption and essentially only one truly fitted
parameter.

The model makes many predictions (we do not discuss all of
them here) that can be tested experimentally and thus is open to ver-
ification or falsification as it should be. In addition, it can be taken
as a fundamental part of a more involved model that includes oscil-
lation in the high-frequency regime. In this case the restriction of the
model to cases where all the current produces oxide must be relaxed.
It is necessary to include tunnel currents that flow through the oxide
to accommodate, e.g., the infrequent galvanostatic experiments13

where a constant current is impressed on the electrode and voltage
oscillations (in a much more complex shape than current oscilla-
tions) are obtained. First attempts at looking at galvanostatic exper-
iments were encouraging and will be published elsewhere.

Finally, our model is applicable to all electrodes, not only Si, where
the basic process is an interplay of oxide formation and dissolution.

Christian-Albrechts-Universität Zu Kiel assisted in meeting the publica-
tion costs of this article.

Appendix
The calculation of the model is performed on two lattices s1(x, y) and

s2(x, y), which store the coordinates of the upper and lower border, respec-
tively, of the oxide layer for each point (x, y); e.g., the thickness s(x, y) of the
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oxide layer is calculated by s(x, y) 5 s1(x, y) 2 s2(x, y). The time evolution
of both lattices is calculated by Monte Carlo simulation which refers to the
fact that the dynamics of the occurrence and stop of an ionic breakthrough
channel is defined by probability functions W(E) and R(E).

Knowing the location of each pore at every moment, the growth and dis-
solution of the oxide is defined by a set of differential equations. A discrete
version of these differential equations allows calculation of s1(x, y, t 1 dt)
and s2(x, y, t 1 dt), which is not a statistical process. The details of this cal-
culation will be published elsewhere. Here we only stress some physical
properties of the implemented differential equations

1. The pure chemical dissolution of the oxide-electrolyte surface, s1(x, y)
is defined by the etching rate, a. Considering the increased area of a rough
surface, the dissolution rate is enhanced, which leads to a smoothing of the
surface roughness.

2. Through each open channel we assume a constant current Iox,channel 5
dQox,channel/dt. At each time step, dt, the semispherical inclusion around each
channel tip is increased by dVox,channel 5 bdQox,channel which defines ds2(x, y).
A current Iox,channel < 0.1 fA builds up a sphere with about 5 nm radius with-
in 10 s, which is in good agreement with our experimental results.

For the dynamics of the channels we define the functions

[A-1]

[A-2]

The parameters Emin and Emax define upper and lower limits for the ionic
breakthrough mechanism on an area DA in the nanometer scale within the
time Dt. Emin and Emax are comparable to values for a perfect oxide, since the
imperfection and inhomogeneity of the anodic oxide is described by the vari-
ances DEmin and DEmax. The variances DEmin and DEmax generate the ran-
domness of the model and, in addition to the parameter DUan, they define the
strength of the desynchronization of the local oscillators. To obtain reason-
able results for the Monte Carlo simulation we used DE/E < 0.15 for Emin
and Emax.
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