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ABSTRACT: We will give a definition for "economically reasonable solar cells" and discuss some very general 
properties of such cells. The only reason, why probably most of the commercially available solar cells and nearly all 
solar cells which we have investigated with CELLO fulfill these conditions is that everybody wants to sell or buy 
only such solar cells. The two basic statements for economically reasonable solar cells are that (independent of the 
serial resistance network) all local diode resistances add up in parallel to the inverse global diode resistance and that 
(independent of the local diode resistances) all local serial resistances add up to the global serial resistance. As a 
result of the modelling of the serial resistance network both statements can be summarized in one statement which is 
not so intuitive as the above ones but which opens the path to a quite universal procedure to calculate quantitative 
maps from the measurement result of a large number of measurement tools: the voltage distribution across a solar 
cell is a linear function of the solar cell area. 
Keywords: characterization, modeling. 
 

 
1 INTRODUCTION 
 

Almost all solar cells with a reasonable efficiency 
which we have investigated with CELLO (solar CELl 
LOcal characterization) [1 - 3] in the last years showed a 
linear voltage distribution as a function of area (details 
see below). For such solar cells with a linear voltage 
distribution a quite simple procedure has been developed 
[3] to get a quantitative map of the local serial 
resistances, so it is really helpful to find a straight line in 
the corresponding plot. But the really astonishing thing 
is, that for all solar cells this straight line has been found, 
so the question arises, under which general condition a 
linear voltage distribution across the area of a solar cell 
can be expected. 

It is a common knowledge and a common 
expectation that the power of a solar cell scales with the 
area of the solar cell. This is e.g. essential for the 
definition of the efficiency of a solar cell. For a perfect 
grid (Rser = 0) this is obviously true. All diode resistances 
RDi ∝ 1 / Ai from small areas Ai sum up in parallel with 
the same quantity to the full inverse diode resistance 
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Eq. (1) explains why the specific diode resistance has 

a dimension of Ω cm2. 
A corresponding scaling law is expected obviously 

for all solar cells, i.e. the grid should be good enough to 
allow for an efficient current collection from all (diode) 
parts of a solar cell. If such a grid is not possible or too 
expensive it is better to produce smaller solar cells and 
connect these cells externally in a module. Otherwise 
large parts of a solar cell - especially those far away from 
the main bus bars - could be cut off without significant 
power losses. We will call solar cells which fulfill such a 
basic requirement as a scaling law between the power 
and the area "economically reasonable". "Economically 
reasonable" solar cells can have quite bad efficiencies, as 
we will see later. Why a scaling law with area is not a 
strong restriction, as one might expect in a first glance 

will become clear later on as well. In what follows some 
quite fundamental properties of economically reasonable 
solar cells will be discussed. 

 
 

2 GENERAL SOLAR CELL MODEL 
 

The final result of a general economical solar cell 
could probably be derived in several ways. Here we will 
summarize results which have already been published 
[3]. Fig. 1 shows a schematic drawing of a solar cell 
configured as a network of resistances and (small) 
circular solar cells. The circular shape is not essential for 
the description, it just allows for a simple analytical 
solution of the current-voltage distribution of this device. 
This circular solar cell has a metallization on the back 
side, a pn-junction with a diode resistance RD = 1 / (K A) 
(A: area, K scaling factor) and a metal contact around the 
periphery to the emitter at the front side with sheet 
resistance ρ. Driving a current dI0 through the cell the 
voltage U as a function of radius r is given by  
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a)   b) 
Figure 1: a) Schematic representation of a solar cell as a 
network of resistances and circular solar cells. 
b) illustration of one circular solar cell element. 



0,0 0,5 1,0

0

10

20

30

40

50

Rser/RD=14

Rser/RD=4/11

Rser/RD=1/14

R

rel.area  
 
Figure 2: Examples for the voltage curves of Eq. (2). 
Case I: exponential behavior for large ratio of serial 
resistance / diode resistance. Case II: linear behavior for 
small ratio of serial resistance / diode resistance. 
 
Here I0 and I1 are modified Bessel functions. Solutions of 
Eq. (2) are shown in Fig. 2 for several ratios of serial 
resistances / diode resistances and a new variable 
x:= (πr2)/A. Case I shows the result which is generally 
expected: The voltage changes exponentially. Obviously 
the current driven into this solar cell only reaches a small 
part of the cell. If illuminating such a cell only from that 
part photo current would be collected efficiently. This 
result does in principle need no calculation to be found. 
If the voltage changes exponentially across the area of a 
solar cell, than the power of such a solar cell can not 
scale with it's area. According to our definition such a 
solar cell is not economically reasonable. Only the case 
II where a linear voltage distribution is found can be 
economically reasonable. The generalization to the 
complete network in Fig. 1 a) is quite clear. If for certain 
areas of a solar cell not all parts contribute to the power, 
than this is true for the whole solar cell as well. If for all 
parts of a solar cell the voltage distribution shows a linear 
relation to the area, than this is true for a network of such 
elements and pure resistors, at least if the solar cell is 
isotropic, i.e. all circular elements are nearly identical 
(resistors just lead to an offset in the voltage but do not 
change slopes with respect to the area). So for 
economically reasonable solar cells the Tailor expansion 
of Eq. (2) up to linear order in the area must hold. Using 
the definition R(x):= dU(x)/dI0, we finally get 
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a)   b) 
Figure 3: Example of Eq. (3) for economically 
reasonable solar cells which illustrate the averaging rules 
for a) diode resistances and b) serial resistances. 

An example for this equation is shown in Fig. 3. Of 
course the averaging rule for diode resistances can be 
derived easily analytically but it is illustrative to have a 
closer look to Fig. 3a). We find the same averaging rule 
of Eq. (1) although all parts contribute differently to the 
average of RD = 1 / (K A). This result just reflects charge 
conservation and would be found for the non 
economically reasonable solar cells as well. 

Before discussing the above result in detail we will 
derive the averaging law for serial resistances. The 
resistance which we find at x = 1 in Fig. 3 a) is that on 
the grid of this solar cell, i.e. the resistance of the global 
solar cell Rsc. Since we did not include shunts into our 
consideration according to Fig. 4 the difference between 
the global solar cell resistance and the global diode 
resistance is the global serial resistance Rser. All lateral 
resistance losses are induced by ohmic losses. Fig. 3b) 
summarizes these results for the serial resistance. Quite 
obviously, but very astonishingly we find that the 
average of all local serial resistance losses equals the 
global serial resistance. This is the same result which we 
would get if just putting N identical resistors Rser,i = Rser / 
N in series 
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For economically reasonable solar cells there is a 

large symmetry between the averaging law for local 
diodes in Eq. (1) and local serial resistances in Eq. (4). 
Local diodes add up in parallel to the global diode 
resistance with the same law one finds for the ideal case 
(Rser = 0). Local serial resistances add up to the global 
serial resistance with the same law one finds for the ideal 
case (RD = ∞). But in contrast to the ideal cases different 
parts of the solar cell contribute differently to the global 
values: Due to the ohmic losses the local diodes are on 
different potentials. Due to the local diodes different 
currents flow through the local serial resistances. 

We have defined economically reasonable solar cells 
by having a scaling law for the solar cell power with the 
area of the solar cell. To fulfill this condition it is not 
necessary to have a perfect grid, it is sufficient to 
produce a grid for which ohmic losses do not increase 
stronger than linearly with the area of the solar cell. This 
is reflected in Eq. (3) and Fig. 3. To get an economically 
reasonable solar cell according to Eq. (2) roughly 
Rser < RD must hold. So as a rule of thumb: When short 
circuit currents can be extracted from all parts of the 
solar cell, the cell is most probably "economically 
reasonable". 
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Figure 4: Very simple equivalent circuit of a standard 
solar cell. 



There is a last criterion which allows to predict if a solar 
cell is definitely economically reasonable. The relation 
between a linear voltage distribution in Fig. 3 and the 
standard equivalent circuit in Fig. 4 has already been 
mentioned before. It is quite astonishing that a distributed 
network which mixes local diodes and local resistances 
can be replaced by the equivalent circuit in Fig. 4 of two 
independent resistors in series and with the simple 
averaging laws of Eq. (1) and Eq. (4). While RD will 
change as a function of applied voltage, the serial 
resistance in the standard model is expected to be 
constant. Defining Rser,∞ := ρ / (8 π) and using Rser = R(1) 
in Eq. (3) we find 
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So according to Eq. (5) as long as the global diode 
resistance RD is much higher than the global serial 
resistance Rser, the serial resistance will not change 
significantly even if RD changes, i.e. the applied voltage 
to the solar cell changes. But as soon as RD ≈ 4 Rser the 
serial resistance will significantly become smaller. The 
reason for this is the current which is short circuited by 
the diode and therefore does not flow through the (local) 
series resistance network. As a consequence the standard 
equivalent circuit does not hold any more although the 
solar cell is still economically reasonable. But of course, 
as long as the standard equivalent circuit can be used for 
modeling a solar cell iv-curve, it will be most probably 
economically reasonable. 
So summing up, being economically reasonable is not a 
strong restriction to a solar cell. It just reflects properties, 
which nearly everybody would expect for all solar cells. 
The definition still has one important consequence: a 
linear voltage distribution across the solar cell area. 
Although for nearly all possible networks of local diodes 
and local series resistances the condition of being 
economically reasonable will not be fulfilled, for nearly 
all commercially available solar cells it will be fulfilled, 
just because otherwise they would have a very poor 
efficiency. Everybody wants to sell good solar cells. The 
reason why nearly all solar cells show a linear voltage 
distribution is neither a physical nor a technical one, it is 
an economical one and therefore we have chosen the 
name accordingly. 
 
 
3 QUANTITATIVE MAPS FOR LOCAL SERIAL 
RESISTANCES 
 
For any method which allows to measure maps which are 
sensitive to the local voltage distribution it is a good idea 
to check for the voltage distribution as a function of the 
area. As discussed above, there is a good chance to find a 
straight line. The only question is how to calculate the 
distribution function from a map in a simple way. Having 
generated a resistance map, just the histogram H(R) is 
needed. 
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According to the steps in Eq. (6) by integrating 

(summing) up the histogram a "density" function N(R) is 
generated. A real density function x(R) is calculated by 
dividing N(R) by the full area respectively the full 
number of pixels in the image. Inverting this function the 
final result R(x) is calculated which corresponds to Eq. 
(3). If a straight line is found, the solar cell is 
economically reasonable and the Eq. (1) to (4) can be 
applied. 

Often, as it is e.g. the case for the CELLO maps, the 
voltage sensitive maps contain some not very precisely 
known scaling factors and offsets. But if e.g. from a fit to 
the global iv-curve the global diode resistance RD and the 
global serial resistance Rser are known, Eq. (3) 
respectively the results of Fig. 3 can be used to generate 
quantitative maps for local serial resistances and/or local 
diodes. 

Fig. 5 summarizes CELLO results for the analysis of 
local serial resistances. 

 

1 cm 25.00 mOhm 40.00 mOhm

R at Open Circuit:

Mean Val. :        31.72  mOhm
R (x, y) = dUoc(x, y) / dIsc(x, y)

 
a) 

R
m

O
hm

25.00

30.00

35.00

40.00

rel. area *10e1 
 0.00  0.02  0.04  0.06  0.08

R
m

O
hm

25.00

30.00

35.00

40.00

rel. area *10e1 
 0.00  0.02  0.04  0.06  0.08

 
b) 

1 cm 8.00 mOhm 16.00 mOhm

Serial Resistance:

Mean Val. :        12.25  mOhm

 
c) 

Figure 5: Typical CELLO example for serial resistance 
analysis. a) Resistance map calculated from open circuit 
map and short circuit map; b) voltage distribution 
function calculated from Eq. (6); c) serial resistance map 
using Eq. (3) for calibration to the global serial resistance 
Rser. 



There is one decisive difference between the two 
straight lines in Fig. 3a) and Fig. 5b). In Fig. 5b) the 
resistances are arranged just according to their values R. 
In Fig. 3a) the resistances are arranged according to their 
distance from the metal contact. Since R(x) in Eq. (3) is a 
monotone/linear function this has the same effect as 
arranging resistances like in Fig. 5b). Any imperfection 
in the solar cell will somehow modify the resistance map, 
leading to a deviation from the perfect straight line for 
very small and very large x values. This does not mean, 
that some parts of the solar cell are not economically 
reasonable, it just means that the proposed algorithm 
does not put all elements to their right position 
(according to the distance from the main bus bars). 
Taking into account this errors, it is even more 
astonishing that more than 80 % of the solar cell area 
reflect one straight line. 
 
 
4 GENERALIZATION TO OTHER METHODS 
 

Several measurement tools like photoluminescence, 
electroluminescence, or IR thermography can produce 
maps which are sensitive to the local voltage. For such 
measurement tools which generated data that is directly 
proportional to the local voltage the proposed method of 
Eq. (6) can of course be directly applied. In some cases 
the measurement tools produce maps G(x,y) which are 
only indirect functions of the local voltage F(U(x,y)). If 
the transfer function F is known the proposed procedure 
can be applied to F-1(G(x,y)). 
 
 
5 SUMMARY AND OUTLOOK 
 

We introduced a quite weak definition for an 
economically reasonable solar cell. It defines mainly a 
requirement for the grid: The grid design should allow 
for a power extraction from the solar cell which scales 
with the size of the cell. This does not need for a perfect 
solar cell. As has been shown, very bad solar cells can 
fulfill this definition as well. But economically 
reasonable solar cells must show a linear voltage 
distribution as a function of the area. This is indeed a 
new information about solar cells which is necessarily 
fulfilled for nearly all commercially available solar cells. 
In this paper it has been used to discuss a procedure for 
calculating serial resistance maps which can be applied to 
a variety of measurement tools which generate maps 
sensitive to the local voltage distribution. 

 
 
6 ACKNOWLEDGEMENTS 
 
This work has been supported by the German network 
project "Netz Diagnistik" and by DFG grant FO 258/11-
1. 
 
 
7 REFERENCES  
 
[1] J. Carstensen, G. Popkirov, J. Bahr, and H. Föll, in 

Proceedings of the 16th European Photovoltaic Solar 
Energy Conference, VD3.35, Glasgow (2000). 

[2] J. Carstensen, G. Popkirov, J. Bahr, and H. Föll, 

Solar Energy Materials & Solar Cells 76, 599 (2003). 
[3] J. Carstensen, A. Schütt, and H. Föll, in Proceedings 

of the 22nd European Photovoltaic Solar Energy 
Conference, 1CV.1.34, Milan (2007). 

 


