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ABSTRACT: The CELLO (solar CELl LOcal characterization) technique is briefly described and demonstrated, in
particular with respect to the voltage response map and their causal relation to series resistances. A suitable model for
a solar cell allowing fully analytical calculations of the interrelation of local voltage response and series resistances is
introduced and discussed. The analytical results are used to derive a simple algorithm that allows to extract local
resistance data in a fully quantitative form from measured voltage response data. Using this technique in combination
with present hard- and software CELLO implementations produces fully quantitative resistance maps with sufficient
spatial resolution within a few seconds.
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1 INTRODUCTION

The CELLO (solar CELl LOcal characterization)
technique allows to measure all parameters of the
equivalent circuit of a solar cell locally and mostly
quantitatively within a short time span (cf. Fig. 1) [1 - 3].

The technique analyses the current and voltage
response of globally illuminated solar cell that is induced
by local illumination with a modulated LASER beam.
Using a very stable potentiostat/galvanostat, a four probe
arrangement for the contact electrodes, and a Lock-in
amplifier, the linear response is measured at several
points along the IV-characteristics of the solar cell. The
amplitude and phase shift of the linear response are
measured with a typically high lateral resolution (~200
µm), i.e. ~500.000 pixel for a (100 x 100) mm2 cell. In
optimized versions of the technique, measuring speeds of
up to 1.000 pixels/s have been realized [3].

For local current maps (e.g. LBIC maps) measured in
the dark or under global illumination, the interpretation is
quite clear since local currents (or current increments)
add up to the full current of the global solar cell for the
matching illumination. In other words, the globally
measured current I or, for CELLO conditions, the current
increment dI, always reflect the local properties of the
area increment investigated. Therefore local currents as
well as spatial averages of currents always represent
contributions of certain areas to the total current obtained
from the global IV-curve. For local voltage increments as
measured by CELLO under constant current or
galvanostatic conditions, this is not true. In the limit of
extremely small grid and serial resistances, the voltage U
would be the same everywhere on the solar cell (i.e. the
Si surface would be an equipotential surface) and voltage
increments dU as measured with CELLO would be
extremely small. Turning the argument around leads to
the conclusion that the “large” and measured voltage
increment dU contains information about the resistance
network of the solar cell. As will be shown, the local
maps of serial and diode resistances, calculated from the
voltage response distribution, can be handled like the
current maps, e.g. averaging gives correct numbers,
which can be compared to corresponding data extracted
from the IV-curve. Using a somewhat simplified model of
a solar cell, it will be shown in what follows that local
resistance data can be extracted from voltage response
data in a fully analytically way. From the results obtained

a simple procedure can be defined that allows to calculate
resistance maps from CELLO voltage maps in a fully
quantitative way. The numbers obtained are, within
certain uncritical limits, identical to numbers obtained by
direct resistance measurements (e.g. with the “Corescan
technique” [4]), but are obtained much faster, with far
better spatial resolution, and without destroying the solar
cell. As will be shown elsewhere [3], the method is
principally capable of being used in-line in a production
environment, satisfying the two basic condition of
measurement time in the 1 s region and no destruction of
the cell.
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Fig. 1: CELLO maps of 100 x 100 mm² crystalline solar
cell. The voltage response map (Fig. 1a) and the
correlated serial resistance map (Fig. 1b) indicate a radial
change around the reference electrode in the right lower
corner.



2 SIMPLE MODEL FOR VOLTAGE RESPONSE
ANALYSIS

2.1 The model
A typical CELLO voltage response map of a

homogeneous mono-crystalline Silicon solar cell is
shown in Fig. 1a). The corresponding (calculated) map of
the local serial resistances Rser(x,y) is shown in Fig 1 b).
In this experiment only one reference electrode (current
free voltage probe) is used that is located in the lower
right corner. In both maps a radial symmetry of the
plotted properties around the reference electrode is
obvious that cannot reflect non-uniformities of the solar
cell. For points far away from the illuminated spot there
is still a significant voltage response to the local
illumination but it contains no local information about the
grid since all areas far away from the spot show the same
response. The maps shown in Fig. 1 have been measured
under open circuit condition, i.e. no current is taken out
of the solar cell. Thus the locally generated excess
carriers are distributed (as a current) through the grid
across the complete solar cell, causing an increase of the
photo voltage, which gets smaller for points farther away
from the illuminated spot due to ohmic losses induced by
the current flow. Since a voltage response is found even
far away from the illuminated spot, parts of the locally
generated current must have reached these far-away
areas. What we have just discussed for the open circuit
condition is also true for CELLO voltage maps taken
under global current flow conditions, since the current
which is taken out of the solar cell is held constant, i.e.
non of the additionally generated local photo current can
leave the solar cell. The current distribution across a solar
cell leading to local voltage changes will be investigated
in a simple two-layer model. The upper layer 1, having a
constant sheet resistance, represents the lateral resistance
network of emitter + grid; layer 2 is the bulk of the solar
cell. The interface between layer 1 and layer 2 is a pn-
junction and will be described by a simple diode
equation. For sake of simplicity the model solar cell is
assumed to be a round disk with the illuminated spot in
the center. The current flow through emitter, pn-junction
and backside metallization is schematically illustrated in
Fig. 2a). Changing the fixed global current for the
CELLO voltage measurement, i.e. changing the working
point for the measurement, does not change the sheet
resistance ρ but changes the resistivity of the diode,
represented by the inverse diode slope K in Eq. (2). We
only need the diode equation in linear order because we
will only calculate the linear voltage response to the
locally generated photo current. The laterally distributed
photo current leads to ohmic losses as described by Eq.
(1).
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Fig. 2: Model for voltage response calculations. 2a)
shows a cross section of the radial solar cell and the
assumed current distribution for the case of local
illumination, and 2b) shows the corresponding equivalent
circuits for linear response. The network of small
resistors can be simplified to Fig 2c).

Current losses through the pn-junction to the backside of
the wafer (described by Eq. (2)) lead to a reduction of the
lateral current. Combining Eq. (1) and Eq. (2) we end up
with the differential equation (3), which is solved by Eq.
(4).
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with rKx ρ= ; I0, I1, K0, and K1 are modified Bessel
functions with 

10 IdxdI =  and 
10 KdxdK −= .

The parameters A, B and Ilat(xmin) have to be calculated
according to the boundary conditions.

For local illumination the spot size has to be specified
by a radius rmin. Assuming the same diode properties as in
the rest of the solar cell, the first boundary condition is

)()( min
2

minmin rKUrIrI Phlat π−= . Since no current can leave
the solar cell, the second boundary condition is

0)( max =rIlat
, and rmax is defined by the area of the solar

cell. Using these boundary conditions, curve a) in Fig. 3
shows an example of the voltage distribution from the
center of the illuminated spot to the boundary of the solar
cell.

In addition, curve b) in Fig. 3 shows the voltage
distribution for current flowing from the periphery into
the solar cell. In this case the ratio between voltage and
current is the slope of the global IV-curve. The boundary
conditions are 

Phlat IrI −=)( max
 and B = 0, i.e. U(0) is not

divergent. Consequently 0)0( =latI  which just reflects
the symmetry of the problem and charge conservation.



The most important result of this model is illustrated
by curve 3) in Fig. 3. Averaging the voltage distribution
across the whole solar cell, both boundary conditions
give the same result. This can be easily generalized by
integrating Eq. (2) over the full solar cell:
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The first equality in Eq. (5a) just means that all
current is consumed in the solar cell. The definition of the
diode resistance RDSC in Eq. (5b) follows directly from
Eq. (2). This result is independent of the sheet resistance
ρ and the chosen boundary conditions as long as no
current is flowing out of the solar cell.

As a last result, the lateral resistance
)()(:)( rIrUrR lat=  is plotted in Fig. 4. It shows a broad

minimum at rtransition, which is essential for the
interpretation of voltage responses.

a)

b)c)

Fig. 3: Results of the simulation: U(r)/IPh is shown for
local illumination in 3a) and for the IV-curve
measurement in 3b). Based on Eq. (3) and (10) the RDSC
is displayed for both cases in Fig. 3c).

Fig. 4: The calculated local serial resistance
)()()( rIrUrR lat=  for the case of local illumination is

shown. There is a minimum at rtransition.

For small distances from the illuminated spot the
ohmic losses lead to a strong decrease in the voltage
response, while only a small fraction of the photocurrent
is flowing through the pn-junction to the backside. For
large distances from the illuminated spot the current
density becomes very small, and ohmic losses are not
relevant anymore. Due to the larger area, a high fraction
of the photocurrent is flowing through the pn-junction,
reducing strongly the lateral current flow. Thus there is a
transition from a region of strong ohmic losses with well-
defined direction of the current flow away from the
illuminated spot to a large region where ohmic losses are
nearly negligible. This describes qualitatively the
experimental result presented in Fig. 1.

2.2 Using the model for a quantitative evaluation of
CELLO maps
In order to calculate serial resistances, the continuous

model of Fig. 2a) must be translated into a model of
discrete resistances as shown in Fig. 2b). This resistance
network, however, is too complicated to be useful for a
simple (and fast) evaluation of the CELLO voltage
response data. From the interpretation of Fig. 3a) we have
learned that most current is consumed far away from the
illuminated spot. This indicates that the resistances
representing the diode in Fig. 2b) may be neglected
without making large errors reaching to the equivalent
circuit of Fig. 2c). The physical meaning of the local
parameters RD(x,y) and Rser(x,y) is quite clear. Only the
meaning of αRSC has to be discussed in more detail. RSC
is the measured resistance of the global IV-curve. αRSC is
a somewhat larger resistance describing that part of the
solar cell into which most of the photocurrent is flowing,
i.e. it describes that part of the solar cell in Fig. 4 found
between rtransition and rmax. Thus α can be calculated by
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Although rtransition is not known in advance, i.e. α is
not known in advance, it can be calculated self
consistently for the voltage data by applying the
following procedure:
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2) Make an estimation for α

3) Short circuit current and voltage map now allow to
calculate the local serial resistance and local diode
resistance from Fig. 2c) by solving the following Eq.
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4) The average of all local serial resistances must
fulfill the following equation
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which just means the global solar cell can be described
by a diode in series with a resistance.



Step 2) to 4) must be repeated until Eq. (9) is met.
This is an easily established routine which gave

reasonable results on a large number of solar cells.

3 SUMMARY AND OUTLOOK

A simple model for solar cells has been introduced,
which can be solved fully analytically to describe the
CELLO photo voltage response as a function of distance
from the illuminated spot. Some general features could be
extracted from this approach, e.g. that the average of all
lateral voltage responses is independent of the serial
resistances and just reflects the average resistance of the
local diodes, which can be summed up to RDSC , the diode
resistance of the global solar cell. On the other hand,
ohmic resistances are mainly responsible for the lateral
distribution of the voltage response. A transition regime
has been identified, which separates the local region
around the illuminated spot with a well-defined current
flow away from this spot from the “distant” areas
containing the rest of the solar cell. The distant areas
contain no information about (local) serial resistance
losses since the local current densities are very small.
This distant areas are described by αRSC, and the local
resistances can be calculated if α is known. It has been
shown that α can be calculated self-consistently from the
CELLO maps and RSC. This procedure has been applied
to a large number of solar cells, leading to excellent
results matching direct measurements in nearly all cases.
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