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3.6.2 Example: Taylor series of arctan function and π-calculation

arctan 1 =
π

4

arctanx
?
=

∞∑
k=0

akx
k Taylor-Series

We could calculate fn(0) but it may be simpler in the following very instructive way: We assume that |x| < 1
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→ very slow converging series: e.g. 1010 terms for 10 precise digits of π!!

Much better: To exploit the properties of the arctan function

π

4
= 4 arctan

1

5
− arctan

1

239

=
4

5

∞∑
k=0

(−1)k

2k + 1

(
1

5

)2k

− 1

239

∞∑
k=0

(−1)k

2k + 1

(
1

239

)2k

∼ 10 terms for > 10 precise digits of π!!
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It remains to prove that
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This we show in three steps by each time applying the addition theorem for the arctan function
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Combining these equation we easily get the desired result.


