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2.6 Vectors in N-dimensional space

A vector is a n-tupel of numbers:

a⃗ =


x1

x2

...
xN

 x1, x2, . . . , xn ∈ R
a⃗ ∈ RN (often N = 2 or N = 3)

Definition 15

⊕ a⃗+ b⃗ =

 a1
...
aN

+

 b1
...
bN

 =

 a1 + b1
...

aN + bN



zero element 0⃗ =

 0
...
0

 , inverse element − a⃗ =

 −a1
...
−aN


a⃗− b⃗ = a⃗+ (−b⃗), a⃗+ (−a⃗) = 0⃗

⊗︸︷︷︸
scalar multiplication

λ ∈ R λa⃗ =

 λa1
...

λaN

⇒
Example: These n-tupels follow the definitions 11 and 12. A line in N -D space is given by a⃗+ λ⃗b λ ∈ R, a⃗, b⃗ ∈ RN
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Definition 16

[a1, . . . , ak] , λ1, . . . , λk ∈ R

λ1a⃗1 + λ2a⃗2 + . . .+ λka⃗k =
∑k

j=1 λj a⃗j is a linear combination of the vectors a⃗1, . . . , a⃗k

Definition 17 Set of vectors [⃗a1, . . . , a⃗k] is called linearly independent if:

λ1a⃗1 + λ2a⃗2 + . . .+ λka⃗k =

k∑
j=1

λj a⃗j = 0

⇒ λ1 = λ2 = . . . = λk = 0

Example:

a⃗1 =


1
2
3
4

 , a⃗2 =


4
3
2
1

 , a⃗3 =


1
1
1
−1

 linearly independent?

λ1a⃗1 + λ2a⃗2 + λ3a⃗3 =


λ1 + 4λ2 + λ3

2λ1 + 3λ2 + λ3

3λ1 + 2λ2 + λ3

4λ1 + 1λ2 − λ3

 = 0⃗ =


0
0
0
0


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only if λ1 = λ2 = λ3 = 0→ linearly independent.

But if: a⃗1, a⃗2 as before and a⃗3 =


6
7
8
9

 then: 2a⃗1 + a⃗2 − a⃗3 = 0⃗

λ1 = 2, λ2 = 1, λ3 = −1 also possible to build 0⃗⇒ [⃗a1, a⃗2, a⃗3] linear dependent!

Definition 18 The dimension N of a vector space is the maximum number of linear independent vectors which
can be found. Any such set of N linearly independent vectors is called a base of the vector space.

Example:

x⃗ ∈ RN , [⃗a1, . . . , a⃗N ] base : x⃗ = λ1a⃗1 + . . .+ λN a⃗N

λ1, . . . , λN − coordinates of vector x⃗ with respect to the base [⃗a1, . . . , a⃗N ]

Example:

N = 2, base: a⃗1 =

(
1
0

)
a⃗2 =

(
0
1

)
x⃗ =

(
5
6

)
= 5 ·

(
1
0

)
+ 6 ·

(
0
1

)
= 5a⃗1 + 6a⃗2

other base b⃗1 =

(
1
1

)
b⃗2 =

(
1
−1

)
⇒

x⃗ =
11

2

(
1
1

)
− 1

2

(
1
−1

)
=

11

2
b⃗1 −

1

2
b⃗2

→
(
11

2
,−1

2

)
are the coordinates with respect to b⃗1, b⃗2

, i.e. not only Cartesian Axis!!
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� RN most important vector space in the following but, CN also possible since

a⃗ =

 z1
...
zN

 z1, . . . , zN ∈ C

is a vector, scalar multiplication is equivalent to multiplication of complex numbers and so on, but since z1
...
zN

 =

 x1

...
xN

+ i

 y1
...
yN


vectors in CN are equivalent to vectors in R2N .

� Complex numbers itself are vectors in space R2

z = x+ iy = x

(
1
0

)
︸ ︷︷ ︸

1

+y

(
0
1

)
︸ ︷︷ ︸

i

⇒ here even multiplication defined by:

(
a1
a2

)
·
(

b1
b2

)
=

(
a1b1 − a2b2
a1b2 + a2b1

)
→ complex multiplication

We will now discuss the last steps of the proof to show under which condition sets of linear equations can generally
be solved. Just for simplicity of writing we use the example of the dimension of a vector space N = 3. So we know
there exists a set of 3 vectors a⃗i for which holds

λ1a⃗1 + λ2a⃗2 + λ3a⃗3 = 0⃗ ⇒ λ1 = λ2 = λ3 = 0



24 Algebra

Taking a fourth vector a⃗4 and writing down the linear combination

λ1a⃗1 + λ2a⃗2 + λ3a⃗3 + λ4a⃗4 = 0⃗

not all λi can be zero, especially λ4 ̸= 0 (otherwise we would have a 4 dimensional space). So we can rearrange the
above equation

a⃗4 = −λ1

λ4
a⃗1 −

λ2

λ4
a⃗2 −

λ3

λ4
a⃗3

which implies that any vector y⃗ = a⃗4 can always be written as a linear combination of a set of base vectors. Defining
a matrix Ã and a vector x⃗ by

Ã = (⃗a1 a⃗2 a⃗3) and x⃗ =

 λ1

λ2

λ3


we now see that any linear equation

y⃗ = Ã x⃗

has a solution if the set of (column-) vectors which form the matrix Ã is linearly independent. This is the essence of
linear algebra. In what follows we will just learn several versions of more elegant and easy ways (e.g. determinants)
to check for linear independence.


