2.5 Some formal definitions in linear Algebra

Although we will not use the following definitions as a starting point for discussing vectors, later on there are some aspects which will need a more general point of view. For sake of completeness and correctness we therefor will already introduce here some formal definitions.

Definition 11 A commutative group (G, +) is defined by

Closure:	For all a and b in G , $a + b$ belongs to G .
Associativity:	For all a, b, and c in G, $(a + b) + c = a + (b + c)$.
Neutral element:	There is an element e in G such that for all a in G , $e + a = a + e = a$.
Inverse element:	For each a in G, there is an element b in G such that $a + b = b + a = e$,
	where e is the neutral element from the previous axiom.
Commutative	For all a and b in G , $a + b = b + a$.

Definition 12 Let (G, +) be a commutative group and $a, b \in G$. Let (K, +, *) be a field and $\alpha, \beta \in K$. V is a vector space, if

Distributive 1:	$\alpha(a+b) = \alpha a + \alpha b.$
Distributive 2:	$(\alpha + \beta)a = \alpha a + \beta a.$
Multiplications are compatible:	$(\alpha \ \beta) \ a = \alpha \ (\beta \ a).$
Scalar multiplication has an identity element:	$1 \ a = a.$

Definition 13 Let V be a vector space. A transformation $A: V \to V$ is a linear function, if for all $f_1, f_2 \in V$ and all $\lambda \in \mathbb{R}(\mathbb{C})$

Linearity 1:
$$A(f_1 + f_2) = A f_1 + A f_2$$
.
Linearity 2: $A(\lambda f_1) = \lambda A(f_1)$.

Definition 14 Let V be a vector space over a field K. A transformation \langle , \rangle : $V \times V \rightarrow K$ is a <u>scalar product</u>, if

Nearly Commutative:	$\langle x, y \rangle = \langle y, x \rangle^*.$
Linearity 1:	$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle.$
Linearity 2:	$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle.$
Positive:	$\langle x, x \rangle \in \mathbb{R}^+$ for $x \neq 0$.

This last definition holds for vectors with complex components. For real numbers the * in the commutative law can be omitted.