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2.3 Complex e-function
Function:f(z) = e*, z € R, e=2.7181...
A f(x)
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We define the exponential function as (the only non trivial function) which is it’s own derivative:
Derivative of the exponential function:
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Just using the definition of the factorial function we find the Taylor series expansion of the exponential function
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First we will prove some very important properties of the exponential function.
Fundamental addition formula of the exponential function:

Applying the definition of the e-function as a series we find
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Euler’s formula:
taking into account % =1, 1 =4 4+2 = _1  {*+3 = _; and using the definitions by the Taylor series
we find
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This is a very important relation. It can be understood as the definition of the sin and cos function and allows
to replace cos ¢ and sin ¢ by the (complex) e-function (and vice versa) = Simplification!!! (e.g. Waves = complex
e-function). In addition the symmetries of the sin and cos functions get already obvious.

sinz and cosx vs. exp:
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For real numbers cosx and sinz are just the symmetric resp. antisymmetric representation of the exp x function
with the following properties
e = cosx+isinx zeR

e ™ = coszx—isinz

cosx = % (e'" + e~ir)
sinz = & (e” - e‘”)

Additionally we directly get

cos’z +sin’z = (cosz +isinx) (cosx — isinz) = e =1

Addition theorems for sin and cos functions:

Combining the exp-addition formula with Euler’s formula we find

(cosycosz — sinysin z) + i (cosy sin z + siny cos z)

cosy +isiny) (cosz +isinz) = eYe
y Y
eiy+2)

1z

cos(y + z) + isin(y + z)
From real and imaginary part we finally get (representing the even and odd part of the complex exponential
function)

cosycosz —sinysinz = cos(y + z)

cosysinz +sinycosz = sin(y + z)

Combining both equations we easily get

tan(y) + tan(z)

tan(y +z) =
(v+2) 1 — tan(y) tan(z)
Back to complex numbers:
— In general: o Alm z
z = r(cosp +isinp) general (r)
Re{z} = rcos unit i
Im{z} = rsing circle - .
r _ |Z| \ Z=C0s @1 sIn ¢
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Multiplication of complex numbers:
21+ 29 = 11"l - peet®? = (rlrz)ei(“"ﬁ‘”)
= (rir2)(cos(p1 + p2) +isin(pr + ¢2))

2-z=re¥ -re ¥ = 2



2.3 Complex e-function

Definition 6

f(z) =¢e* z e C is the complex e-function with

z=a+bi = et = ¢%b = ¢%(cosb+isinb) = complex e-function is periodical in 2
Re(e®) = e®cosb;
Im(e®) = e%sinb;
b=0 — e*=¢€" o0.k;
a=0 — e =e’=cosb+isinb o.k;
Example:
Has the equation e* = —1 any solution? (see also 3.5)
Imz
z-real — no .
i
z-complex = e cosb = -1
e’sinb = 0=b=nr
= e cosnm = —1
a=0 n=2k+1 Re s
= z=(2k+1)mi 1
— €™ 41 =0 beautiful expression

Similar to the definition of the cos and sin function we have

Definition 7 hyperbolic functions
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coshr = = ( r + eim) eR sinh x
2 °] cosh x
, 1, . ]
sinhx = 3 (e —e ) \ ]

sinh x et —e "
tanhx = =
cosh x eT + e ® T

like tan x — Definitions also valid for complex arguments

sinhz = (¢ —e),

coshz = %(e“re*z),
sinh(iz) = %(e” e ™) =isinz,
cosh(iz) = % (e +e ) =cosx

Theorem for cosh and sinh:
cosh? z — sinh® 2 = (cosh z + sinh z) (coshz — sinhz) = e®e™* = 1

— sin z, cos z for complex arguments are also defined in a logical way:
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Definition 8
sin z

COoS z

e.g.
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The above relation between sin, cos, sinh, and cosh allow e.g. to easily apply the addition theorems to calculate

cosh (a + ib)

cosh (a) cosh (ib) + sinh (a) sinh (ib)
cosh (a) cos (b) + isinh (a) sin (b)



