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4.11 Integrals using grad, div, and curl

We already defined the nabla operator in connection with the gradient in section 39

∇⃗ =


∂

∂x1

...
∂

∂xN

 x⃗ ∈ RN

Applying this operator to a function with one component f(x⃗) we get the gradient

gradf = ∇⃗f =


∂f
∂x1

...
∂f
∂xN

 .

Note that the gradient is applied to a scalar and the result is a vector.
One essential aspect of the gradient is the solution of path integrals

x⃗e∫
x⃗b

∇⃗f dx⃗ = f(x⃗e)− f(x⃗b).

Calculating the scalar product of the nabla operator and a function with several components f⃗(x⃗) we get the
divergency

divf⃗ = ∇⃗f⃗ =
∑
i

∂fi
∂xi

.

Note that the divergency is applied to a vector and the result is a scalar.
One essential aspect of the divergency is the solution of volume integrals

y

V

∇⃗f⃗ dx dy dz =
{

∂V

f⃗ dA⃗.

Here ∂V denotes the closed surface of the volume V the integration is calculated over.
Calculating the vector product of the nabla operator and a function with several components f⃗(x⃗) we get the curl

curlf⃗ = rotf⃗ = ∇⃗ × f⃗ .

Note that the curl is applied to a vector and the result is a vector.
One essential aspect of the curl is the solution of area integrals (Stokes integral equation)

x

A

∇⃗ × f⃗dA⃗ =

∮
∂A

f⃗ dx⃗.

Here ∂A denotes the closed path around the area A the integration is calculated over.

Examples using the Maxwell equations:

As an example for a vector function we already discussed in section 4.2 the electric field of a point source with
positive charge q, i.e. the charge density ρ(r⃗) = qδ(r⃗). The electrical field strength is calculated from the 1. Maxwell
equation

ρ

ϵ0
= ∇⃗E⃗(r⃗).

Integrating the Maxwell equation over a sphere with radius r centered around the point charge we find

q

ϵ0
=
y

sphere

qδ(r⃗)

ϵ0
dx dy dz =

y

sphere

∇⃗E⃗(r⃗) dx dy dz =
{

surface sphere

E⃗(r⃗) dA⃗.

Obviously the electrical field strength E⃗(r⃗) = E(r) r⃗r has a radial symmetry; thus the right hand integral can be
simplified {

surface sphere

E⃗(r⃗) dA⃗ =
{

surface sphere

E(r) dA,
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i.e. the scalar product reduces just to the product of the length of vectors, finally leading to

q

ϵ0
= E(r)4πr2,

where 4πr2 is the surface area of a sphere with radius r, leading to

E⃗(r⃗) =
q

4πϵ0r2
r⃗

r
.

Since E⃗ = −∇⃗U and taking the potential U(∞) = 0 we find the potential of a point charge as

U(r⃗) =

∞∫
r

(−∇⃗U) dr⃗ =

∞∫
r

E⃗ dr⃗ =

∞∫
r

E dr =
q

4πϵ0r
.

For this final result the path along the r⃗ direction has been chosen.

The 2. Maxwell equation reads
∇⃗ × B⃗(r⃗) = µ0 j⃗(r⃗).

Having a straight wire with a current density j⃗ we find according to the Stokes integral equation

µ0 I =
x

A

µ0j⃗(r⃗)dA⃗ =
x

A

∇⃗ × B⃗dA⃗ =

∮
∂A

B⃗ dx⃗.

Choosing for the path in the right hand side integral a circle perpendicular to the wire centered around the center
of the wire, which due to symmetry implies B⃗ dx⃗ = const. along the path, we finally get

µ0 I = |B⃗|2πr.


