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4.9 Simple N-dimensional integrals

b
J f(z)de = A= F(b) — F(a)

o 1D case T

with 4€ = f(z) A

We will only discuss a 3D example: f:R> - R f(z,y,2)
Integrals over volumes:

zo [ y2(x) [ 2z2(z,y)
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It is often difficult to determine the border, the integrals may be simple. Simplest case: Cartesian limits
Example: f(z,y,2) = yxz integral over a cube with edge a
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Volume: f(z,y,2) =1 — [[[1dx dy dz= Volume of the integration area
O
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z € [-R,R]

y € [-VR? — 22, +VR? — 22|

z€ —\/Rz—m2—y27+\/R2—m2—y2]

Just writing down the limits for the integral is tedious work in Cartesian coordinates, but very simple in spherical

coordinates:
T 27
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Here we used the Jacobi determinant as calculated in section 4.5.1 to get the correct integration scaling for this
coordinate transformation. Finally we get
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