4.7 Minimization problems

Remember 1D: f(x) extreme value at x_0 $f(x) \ge f(x_0)$ for all x close to $x_0 \to x_0$ -minimum (similarly. $f(x) \le f(x_0) \to \text{maximum}$) (+ using f''(x), i.e. -curvature information)

$$x_0\text{-extremum} \Rightarrow f'(x_0) = 0 \land \begin{cases} \text{ if } f''(x_0) < 0 & \text{maximum} \\ \text{if } f''(x_0) > 0 & \text{minimum} \\ \text{if } f''(x_0) = 0 & \text{no decision,} \\ & (\text{saddle point?}) \end{cases}$$

Example:

$$f(x) = xe^{-x^{2}}$$

$$\to f'(x) = e^{-x^{2}}(1 - 2x^{2}) \to x_{0} = \pm \frac{1}{\sqrt{2}} \Leftrightarrow f'(x_{0}) = 0$$

$$\to f''(x) = e^{-x^{2}}(2x^{2} - 3)2x$$

$$\to f''(x_{0}) = e^{-\frac{1}{2}}\left(2\frac{1}{2} - 3\right)2\frac{\pm 1}{\sqrt{2}}$$

$$= -4e^{-\frac{1}{2}}\frac{\pm 1}{\sqrt{2}} = \pm 2\sqrt{2}e^{-\frac{1}{2}}$$

$$f''(+\frac{1}{\sqrt{2}}) < 0 \to \max$$

$$f''(-\frac{1}{\sqrt{2}}) > 0 \to \min$$

Example: $f: \mathbb{R}^N \to \mathbb{R}$

 $\overline{N=2} f(x,y) = x^2 + y^2 - 2x - 4y + 5$

if (x_0, y_0) with $f(x_0, y_0) \leq f(x, y)$ for all (x, y) exist then (x, y) is a minimum:

$$f(x,y) = (x^2 - 2x + 1) + (y^2 - 4y + 4) = (x - 1)^2 + (y - 2)^2$$
$$f(x,y) \ge 0 \to x_0 = 1 \land y_0 = 2 \text{ is a minimum}$$

Derivatives:

$$\frac{\partial f}{\partial x} = 2x - 2 \qquad \frac{\partial f}{\partial x} = 0 \to x_0 = 1$$

$$\frac{\partial f}{\partial y} = 2y - 4 \qquad \frac{\partial f}{\partial y} = 0 \to y_0 = 2$$

$$\to \text{ general feature ? YES!!}$$

Definition 41 local minimum \vec{x}_0 of $f: \mathbb{R}^N \to \mathbb{R}$ means that $f(\vec{x}) \geq f(\vec{x}_0)$ for all $\vec{x} \in \mathbb{R}^N$ "close to" \vec{x}_0 . local maximum \vec{x}_0 of $f: \mathbb{R}^N \to \mathbb{R}$ means that $f(\vec{x}) \leq f(\vec{x}_0)$ for all $\vec{x} \in \mathbb{R}^N$ "close to" \vec{x}_0 . Calculation of a (local) minimum or maximum in N-dimensions: If \vec{x}_0 is a minimum or maximum then

$$\vec{\nabla} f(\vec{x}_0) = \vec{0}$$
, i.e. $\frac{\partial f(\vec{x}_0)}{\partial x_k} = 0$ for all $k = 1, \dots, N$

Note: this is a necessary condition and not always sufficient!! (same as in 1D) Examples:

(i) Minimum

$$f(x,y) = x^2 + y^2 \rightarrow \frac{\partial f}{\partial x} = 2x, \ \frac{\partial f}{\partial y} = 2y \rightarrow (0,0) \text{ is a minimum since } f(x,y) \ge 0 \text{ for all } (x,y)$$

(ii) Maximum

$$f(x,y) = -x^2 - y^2 \rightarrow \frac{\partial f}{\partial x} = -2x, \ \frac{\partial f}{\partial y} = -2x \rightarrow (0,0)$$
 is a maximum since $f(x,y) \le 0$ for all (x,y)

(iii) Saddle point

$$f(x,y) = x^2 - y^2 \rightarrow \frac{\partial f}{\partial x} = 2x, \ \frac{\partial f}{\partial y} = -2y$$

 $\rightarrow \vec{\nabla} f = \vec{0} \text{ at } \vec{x}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

But:

$$\begin{array}{lll} f(x,y=c) & = & x^2-c^2 \to \infty & \text{for } x \to \infty \\ f(x=c,y) & = & c^2-y^2 \to -\infty & \text{for } y \to \infty \end{array} \right\} \quad \text{no extreme}$$

 \rightarrow "saddle point" at $(0,0) \Rightarrow$ second derivative?

 $\vec{\nabla} f$ is the total derivative of $f: \mathbb{R}^N \to \mathbb{R}$ $\vec{\nabla} f$ is a function $\mathbb{R}^N \to \mathbb{R}^N$ since the gradient is a vector, thus

$$\vec{\nabla}f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_N} \end{pmatrix}$$

 \rightarrow second (total) derivative is the (total) derivative of the gradient, i.e. it is an $N \times N$ Matrix \tilde{H} !

$$\tilde{H}(\vec{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{pmatrix}$$

 $\tilde{H}(\vec{x})$ is symmetrical since $\frac{\partial^2 f}{\partial x_j \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_j}$

 $\tilde{H}(\vec{x})$ is called the second derivative f and has the name "Hesse matrix"