110 Calculus II: Functions of multiple variables

4.6 Curvilinear coordinates

Spherical and cylindrical coordinates are examples of curvilinear coordinates uy, us, and ug for which at each point

holds
3

i = ai(uy, uz, ug) &(ur, uz, ug) du;
i=1
with €;e; = 0;k, i.e. curvilinear coordinates form locally an orthogonal base. The base vectors have a length
a;(u1,u2,ug) which depends on wy.
Consequently the Jacobi matrix and determinant and their inverses are
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According to the chain rule the gradient in curvilinear coordinates can be written as

gradf = Vf Z

a; 8u1

It is hard work to find a general expressing for the Laplace operator in curvilinear coordinates. Still we will outline
the prove since it summarizes nearly everything we learned about linear algebra and analysis.
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The first sum is already finished. To simplify the second sum we calculate first
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and secondly (since second order derivatives can be interchanged)
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Combining all equations we finally get
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thus e.g. for spherical coordinates we get
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