106 Calculus II: Functions of multiple variables

4.5 Total Derivatives

partial derivatives were defined for f:R"™ — R!
— tangents on a hyper surface: We consider now:f : RV — RM a vector function.

Definition 40 [ :RY — RM #,h e RN A€ RM*N = M x N matriz. f(x,y)
Matriz A(Z) is called the total derivative of f, if f can be expressed as of
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e in components this means:
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Matrix multiplication

e case: M =1:
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Thus:

A=Vf: fE+h)=f@) +Vf h+oh)
is the total derivative — N-dimensional Taylor expansion up to the first order!
= Thus, total derivative is the generalization of the direction to the case N, M.

A-h=0
is the parametrization of an M dimensional hyperplane at the point h = 6, i.e. at & that ”touches” the
M-D-function
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e Note: f RY — RM . If total derivative exists then
— all partial derivatives a—f’“ of all components with respect to all variables are well defined!

total derivative = partial derivatives
4 not in general, but for all ”friendly” functions o.k.

Hence: total < partial
Examples
() f:RY =R
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- C : ¢ — N x N Matrix symmetric!

f@) = (2z1,...,2n)

total derivative:
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In general:
fi(zy,...,zN)
— f2(xla . axN)
f RN%RM (f): - f]( , Tk )
fM(xla a-TN)
than: total derivative is given by the Matrix:
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A is called Jacobi-Matrix of f or the differential of f and det A is called the Jacobi or Functional determinant of f



