104 Calculus II: Functions of multiple variables

4.4 Derivatives in certain directions
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Definition 38 Derivative in certain direction:
If f:R™ — R, direction 1, than
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is defined as the derivative of f in the direction 71
= Thus partial derivative (%fk is derived in the direction €y
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In general: writing 77 as a linear combination of base vectors, i.e.
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and taking into account, that differentiation is a linear operation we get
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This vector is called
the gradient of f
Definition 39 f:RY — R then gradient is the vector
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Derivative in a certain direction 77 € RN can be written as:

of o,
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Thus as illustrated in the figure, the gradient is the direction \&i_/\_// X

of steepest descent.
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Higher order partial derivatives:

function: f: RN - R f(z1,...,2N)
partial derivative % is again a function of x1,...,zyN

second partial derivative:
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Always ( apart from mathematically pathological cases):

Also possible:
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= + exchange order of derivatives doesn’t influence the result
O0x;j0r);  Ox0x;

n-th derivative:
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