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3.20 Aspects of probability theory

In probability theory the statistical analysis of sets of experimental data Xi is performed. Several expectation
values are calculated reflecting certain properties of the experiments and theoretical consideration with respect to
the expectation values are discussed. A typical experiment could be the result of 1000 times dicing, i.e. X1 =
1, 6, 3, 3, 2, · · ·. Repeating this experiment several times Xn different sequences of data will be found but several
numbers of these experiments - the expectation values - will be similar (within certain error bars) and the error bars
become smaller with increasing number of experiments which is the law of large numbers. To calculate expectation
values for the above dicing experiment we count, how often Nn each number n is found in the sequence. Next
we calculate the sum N =

∑
n Nn and finally the probabilities pn = Nn/N to find each number. This allows to

calculate the three most decisive expectation values

1 =
∑
n

pn ; µ =
∑
n

n pn ; σ2 =
∑
n

(n− µ)
2
pn .

For continuous variables the sums translate into integrals

1 =

∫
f(x)dx ; µ =

∫
xf(x)dx ; σ2 =

∫
(x− µ)

2
f(x)dx ,

where f(x) is a probability density.
In order to have only one notation we can use the properties of the delta-function to replace the upper version of
sums by integrals as well:

f(x) =
∑
n

pnδ(x− n)

Finally we define an expectation function of a set of stochastic data

E[· · · ] =
∫
· · · f(x)dx

where f(x) is the probability density of X. The decisive property of E is it’s linearity. We get

1 = E[1] ; µ = E[X] ; σ2 = E[(X − µ)
2
] .

Often stochastic data is translated into standard data X∗
i = (Xi − µ) /σ, i.e.

1 = E[1] ; µ = E[X∗] = 0 ; σ2 = E[(X∗)
2
] = 1 .

Introducing the momentum function

MX∗(t) = E [exp(tX∗)]

one can easily calculate the above expectation values as

1 = E[1] = MX∗(0) ; 0 = µ = E[X∗] =
dMX∗

d t
(0) ; 1 = σ2 = E[(X∗)

2
] =

d2 MX∗

d t2
(0) .

For e.g. the standard Gaussian distribution (the normal distribution) we find

MN (t) =
1√
2π

∫ +∞

−∞
exp(t x) exp

(
−x2

2

)
dx = exp

(
t2

2

)
Finally we will sketch the prove for the central limit theorem of probability theory. Let us define a larger set of
standard data Z = [X∗

1 , X
∗
2 · · ·X∗

n] /
√
n. For the momentum function we get

MZ(t) = E[exp(t Z)] = E[exp

(
t(X∗

1 + · · ·+X∗
n)√

n

)
] = MX∗

1
(t/
√
n) ∗ · · · ∗MX∗

n
(t/
√
n)

For any n we perform the Taylor-expansion of MX∗
n
= h(t) around t = 0

h(t) = h(0) + h′(0) t+
h′′(0)

2
t2 +O(t3)
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Of course h(0) = 1, h′(0) = 0, and h′′(0) = 1, so

h(t) = 1 +
t2

2
+O(t3)

leading to

MZ(t) =

(
1 +

t2

2n
+O

(
t3

n3/2

))n

→ exp

(
t2

2

)
for n→∞

for the last implication we used

lim
n→∞

ln

(
1 +

t2

2n
+O

(
t3

n3/2

))n

= lim
n→∞

(
n

t2

2n
+ nO

(
t3

n3/2

))
=

t2

2

So the momentum function MZ(t) of any standard data resembles asymptotically the momentum function of
the standard Gaussian distribution. Since the definition of the momentum function is very close to the Fourier
transformed or Laplace transformed and both transformation can be inverted, the asymptotic convergence of the
momentum functions implies the asymptotic convergence of the distribution functions. Thus for very large numbers
all standard distributions resemble asymptotically the normal distribution, i.e. the standard Gaussian distribution
which is an extraordinary general and important statement.


