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3.16 Fourier Transformation: Solving DEQs

Example 1: Low pass filter:

We know:

U(t) = R I(t) (resistor)

U(t) =
Q(t)

C
(capacitor).

R
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C
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So according to the Kirchhoff equations we find for the current across the capacitor IC

Ui(t)− Uo(t)

R
= IC(t) = CU̇o .

After Fourier-Transformation this differential equation for Uo translates into

Ui(ω)− Uo(ω)

R
= iωCUo(ω) ,

i.e.

Uo(ω) =
Ui(ω)

1 + iωRC
:= A(ω)Ui(ω) ,

which is the response to a sinusoidally modulated input signal with frequency ω/2π. Using the example IV for
calculation of Fourier transformed we can find the original function A(t) of A(ω)
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According to the convolution theorem we find

Uo(t) = F−1

{
1

1 + iωRC
Ue(ω)

}

=
1√
2π

+∞∫
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A(t− τ) Ui(τ) dτ =
1
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e−
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So this integral allows to calculate the response Uo(t) of a low pass filter to an arbitrary input signal Ui(t). Typically
a filter is characterized in real space by the response to a step like perturbation

Ui(t) =

{
U0 for t ≥ 0
0 for t < 0

,

which for our case is

Uo(t) =
1

RC
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= U0
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In this example we calculated the two typical descriptions of a filter:

� the transfer function A(ω) in Fourier space

� the answer to a step like perturbation in real space, i.e. the transient.


