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3.13 From Fourier series to Fourier-Transformation

We already states that functions with periodicity length L can be developed into a Fourier series:
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Non periodic functions can be interpreted as functions with periodicity length L→∞.
We introduce a new variable k = 2π

L n, i.e. ∆k = 2π
L ; so k becomes a contiuous variable for L → ∞. Replacing n

by k in the above equations we get
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The decisive step now is to shift the variable L from the first equation into the second equation which as we will
see in consequence translates the Kronecker-δ into the δ function:
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Now the transition L→∞ is possible, leading to
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Various versions of this equations exist, since the minus sign in the exponent can be shifted from the second into
the first equation (, i.e. replacing k by −k) and the scaling factor 1

2π can be shifted to the second equation or in a
symmetrical definition the square root of this factor can be written in front of both integrals.


