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3.6 Taylor series and error estimation

If f(x) is a ”normal” function than
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i.e. the error term
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is the difference between the exact function and the approximation.

Example:

f(x) = sinx; x0 = 0

Taylor: f(x) = x− x3
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is called a Taylor approximation or series of the order n to the function f(x) at the point x0.

Example: Approximation of third order to f(x) = ex at x0 = 0:

ex ≈ 1 + x+
1
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notation ”zero of x4” means approximately up to x3 exact
Sometimes problems: (rare cases)
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x2 if x ̸= 0 and f(x) = 0 if x = 0. → well defined function.

Taylor-Series around x0 = 0
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⇒ f ′(0) = 0 and also fn(0) = 0 for all n!!

⇒ Thus Taylor-series of f(x) is ≡ 0⇒ unsuccessful approximation!!


