66 Calculus I: Functions of one Variable

3.6 Taylor series and error estimation

If f(z) is a "normal” function than
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is the difference between the exact function and the approximation.

Example:
f(x) = sinx; X =
3 ad
Taylor: f(z) = x7§+yf5(ex) 0<e<l1
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fP(z) = cosx= |f(x)— (:v - 3'> =|Af] = §| cos(ex)| < T~ may diverge for large x
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is called a Taylor approximation or series of the order n to the function f(x) at the point xg.

Example: Approximation of third order to f(z) = e® at z¢p = 0:
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notation ”zero of £%” means approximately up to z*® exact
Sometimes problems: (rare cases)

f(x)

f(x):e_%z if x #0 and f(z) =0if 2 = 0. — well defined function.
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Taylor-Series around zy = 0
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= f(0)=0 andalso f*(0)=0 for all n!!
= Thus Taylor-series of f(z) is = 0 = unsuccessful approximation!!



