36 Algebra

Classification of $N \times N$ Matrices: 2.11

$$\tilde{A} = \begin{pmatrix} a_{11} \cdots a_{1N} \\ \vdots \\ a_{N1} \cdots a_{NN} \end{pmatrix}$$

(i) $\det(\tilde{A}) \neq 0$ regular matrix

(ii)
$$\tilde{A} = \tilde{A}^{\top}$$
 \Rightarrow symmetric matrix $a_{jk} = a_{kj}$ example $\begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 2 \\ 4 & 2 & 3 \end{pmatrix}$

- (iii) $\tilde{A} = -\tilde{A}^{\top}$ \Rightarrow anti-symmetric matrix $a_{jk} = -a_{kj}$, in particular $a_{jj} = 0 \Rightarrow \operatorname{tr}(\tilde{A}) = 0$ (iv) $\tilde{A} = \tilde{A}^{+}$ \Rightarrow self-adjoined matrix or Hermite-matrix , this means:

$$\tilde{A} = \overline{(\tilde{A}^{\top})}, \ a_{jk} = \overline{a_{kj}}$$
example:
$$\tilde{A} = \begin{pmatrix} 1 & 2 & -i \\ 2 & 2 & 1-i \\ i & 1+i & 3 \end{pmatrix},$$

if A is real then (ii) and (iv) are equivalent. \rightarrow diagonal elements of a Hermite-matrix are real, because of $a_{jj} = \overline{a_{jj}}$. The determinant is also real, i.e. $\det(\tilde{A}) \in \mathbb{R}$ if \tilde{A} is a Hermite matrix.

- (v) $\tilde{A} = -\tilde{A}^+$ anti-Hermite matrix (\rightarrow diagonal elements vanish) in particular $a_{jj} = 0 \Rightarrow \operatorname{tr}(\tilde{A}) = 0$
- (vi) $\tilde{A}^{\top} = \tilde{A}^{-1}$ \Rightarrow \tilde{A} is called orthogonal (real case) $\tilde{A}\tilde{A}^{\top} = \tilde{A}^{\top}\tilde{A} = \tilde{I}$ if \tilde{A} is complex than $\tilde{A}^{+} = \tilde{A}^{-1}$ means that A is "unitary". Properties of orthogonal matrices: $\det(\tilde{A}) = \pm 1$ (follows from $\det(\tilde{A}) = \det(\tilde{A}^\top)$) and $\det(\tilde{A}\tilde{A}^{\top}) = \det(\tilde{A})\det(\tilde{A}^{\top})$ if \tilde{A} and \tilde{B} orthogonal, then $\tilde{A}\cdot\tilde{B} = \tilde{C}$ is also orthogonal.

Example: rotation around z-axis

$$\begin{split} \tilde{A} &= \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \to \tilde{A}^{\top} &= \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \Rightarrow \tilde{A}\tilde{A}^{\top} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{since} \quad \cos^2 \phi + \sin^2 \phi = 1 \end{split}$$

Test:

$$\det(\tilde{A}) = 1 \begin{vmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{vmatrix} = +1 \text{ o.k.}$$

(vii) diagonal Matrix:

$$\tilde{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{NN} \end{pmatrix}$$

 $\det(\tilde{A}) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{NN}$ for diagonal matrix \tilde{A}