2.10 Regular matrix, inverse matrix

Definition 26 if det $(\tilde{A}) \neq 0$ the \tilde{A} is called a regular matrix, otherwise irregular or singular

inverse matrix:

Definition 27 $\tilde{A} N \times N$ Matrix with $\det(\tilde{A}) \neq 0$ then \tilde{A}^{-1} defined by $\tilde{A}\tilde{A}^{-1} = \tilde{A}^{-1}\tilde{A} = \tilde{I}$. \tilde{A}^{-1} is called the inverse matrix with respect to \tilde{A} . \tilde{A}^{-1} is given by the following formula:

$$\tilde{A}^{-1} = \frac{1}{\det(\tilde{A})} \begin{pmatrix} & & / \\ & A_{jk} \\ / & & \end{pmatrix}_{k,j=1,\dots,N}^{\top},$$

where A_{jk} are the cofactors of a_{jk} in \tilde{A} .

Note: We still do not define a matrix division since

$$(\tilde{A}, \tilde{B}, \tilde{X}_1, \tilde{X}_2 N \times N \text{ matrices, } \det(\tilde{B}) \neq 0)$$

 $\tilde{B}\tilde{X}_1 = \tilde{A} \implies \tilde{X}_1 = \tilde{B}^{-1}\tilde{A}$
 $\tilde{X}_2\tilde{B} = \tilde{A} \implies \tilde{X}_2 = \tilde{A}\tilde{B}^{-1} \neq \tilde{B}^{-1}\tilde{A} \text{ in general}$
 $\rightarrow \text{ thus, division cannot be properly defined!! (Scalars: $b^{-1}a = ab^{-1} = \frac{a}{b}$)$